Citrus Nutrition in North Florida

Tom Obreza

UF IFAS Extension UNIVERSITY of FLORIDA

Second Edition Edited by Thomas A. Obreza and Kelly T. Morgan

U

IFAS Extension

SL 253

http://edis.ifas.ufl.edu/ss478

Considerations using SL 253 in north Florida

Factor	Commercial FL citrus industry	North Florida			
Soil	Sandy topsoil, lack of clay, low organic matter, varying drainage.	Similar soils, but will find clay in root zone and higher OM.			
Fruit production	Production dominated by juice oranges, with some fresh fruit.	Fresh fruit production mandarins, navels, etc.			
Climate	Longer growing season, fewer freezes of shorter duration.	Shorter growing season, more frequent freezes of longer duration, lower temps.			

A les and and

Soil considerations

a in the summer

Soil Types

Candler (Ridge)

Myakka (Flatwoods)

and the second

Riviera (Flatwoods)

Soil Types

B

Б						
l						
Ŀ						
•	-	-	-	-	-	-

Mostly Ultisols. Dominated by level to sloping, well drained loamy soils and sandy soils with loamy subsoils. Primarily used for field crops, pastures, and forest products. Excellent for homesites and urban development.

Mostly Entisols. Dominated by nearly level to sloping, excessively drained thick sands. Primarily used for field crops, tobacco, watermelons, and forest products. Very good for homesties and urban development.

All and the second

Soil considerations in nutrient management

- pH (5.5 to 6.5)
- Organic matter (nutrient-holding capacity)
- Sand/Silt/Clay texture (water-holding capacity)

Greater than 2% OM and/or loamy texture in root zone: Use lower end of recommended nitrogen fertilization range.

Less than 1% OM with sandy texture:

A los Calina

Use higher end of recommended nitrogen fertilization range.

Plant nutrient considerationsPrimary:N, P, KSecondary:Ca, Mg, SMicro:Cu, Zn, Mn, Fe, B, Mo

A Real Section Section

Nutritionally, what takes you from here.....to here?

2nd year

March March & March March

8th year

Relative importance of nutritional factors affecting citrus tree growth, yield, and fruit quality.

Young trees (first 3 years)

Nitrogen

Table 8.1. Recommended N rates and minimum number of annual applications for non-bearing citrus trees.

Year in grove	lbs N/tree/year	Lower limit of annual application frequency							
	(range)	Controlled-release fertilizer	Dry soluble fertilizer	Fertigation					
1	0.15 - 0.30	1	6	10					
2	0.30 – 0.60	1	5	10					
3	0.45 - 0.90	1	4	10					

Phosphorus, Magnesium – Apply according to soil test.

- Potassium Apply K₂O equal to N rate.
- Calcium Check soil pH, Lime if needed.

Micronutrients – Apply only if soil was not previously cultivated.

Controlled-release fertilizer materials

<1960s	Manure and other "natural" materials						
1960s	Sulfur-coated urea (SCU) Urea formaldehyde (UF)						
1970s	Isobutylidene diurea (IBDU) Methylene urea (MU)						
1980s	Plastic-coated urea (PCU)						
1990s	Plastic-coated, S-coated urea (PCSCU) Resin-coated N-P-K						
2000s	Refinement of earlier technologies						

Experiment: One application of CRF per year

Nitrogen is the most important mineral nutrient needed to build tree canopy

A le contrata de

1st year

8th year

Effect of K fertilizer on tree growth

Without K fertilizer

With K fertilizer

Aller Same

Severe K deficiency

1

Effect of P fertilizer on tree growth

Without P fertilizer

With P fertilizer

and the second s

1 to the loss of all the

Bearing trees – Nutrients removed in harvested crop

Table 3.3. Total amounts of various nutrients in 100 boxes¹ of orange fruits.

Nutrient	Hamlin ²	Hamlin ³	Hamlin ⁴	Parson Brown ³	Valencia ³	Sunburst ³	Average
			of fruit				
Ν	12.5	10.6	10.8	11.3	13.5	13.6	12.1
Р	1.4	1.5	1.7	1.5	2.0	1.8	1.7
K	17.6	13.6	13.9	13.3	14.4	14.0	14.5
Ca	4.5	4.0	5.2	4.9	4.3	3.4	4.4
Mg	1.9	1.1	1.0	1.2	1.2	1.0	1.2
S	1.1		0.8				1.0
Fe	0.024	0.020	0.036	0.030	0.072	0.036	0.036
В	0.020		0.025				0.023
Zn	0.020	0.032	0.008	0.032	0.029	0.041	0.027
Mn	0.011	0.020	0.004	0.023	0.023	0.023	0.017
Cu	0.006	0.005	0.006	0.006	0.007	0.007	0.006

¹1 box of fruit = 90 lbs.

²A. K. Alva, unpublished data.

³Paramasivam et al. (2000).

⁴Mattos et al. (2003).

Bearing trees - Nitrogen

Year in grove	Oranges	Grapefruit	Other varieties	ieties Lower limit of annual application frequen				
	lbs	N/acre/year (ran	ige)	Controlled-release fertilizer	Dry soluble fertilizer	Fertigation		
4 through 7	120 - 200	120 - 160	120 - 200	1	3	10		
8 and up	140 – 250 Yield-based ¹	120 - 160 ²	120 - 300 ³	1	3	10		

Table 8.2. Recommended N rates and minimum number of annual applications for bearing citrus trees.

¹See Fig. 8.3 for specific production-based N fertilizer rate recommendations.

²For grapefruit groves producing more than 800 boxes/acre, the maximum recommended N rate is 180 lbs/acre.

³For Orlando tangelos, the maximum recommended N rate is 250 lbs/acre. For Honey tangerines (Murcotts), the maximum recommended N rate is 300 lbs/acre.

Projected orange soluble solids yield (lbs/acre)

Bearing trees

Phosphorus – Based on soil and leaf tissue tests

Table 8.3. Recommendations for P fertilization of bearing citrus trees based on leaf tissue and soil tests taken according to the guidelines described in Chapter 4 (leaf and soil samples taken in July or August of each year).¹

If leaf tissue P is	and soil test P is	the recommendation for P fertilization is:
Excessive Soil test P value is not applicable.		Do not apply P fertilizer to the soil for 12 months following leaf and soil sampling,
Optimum	Sufficient	then sample again and re-evaluate.
Optimum	Less than sufficient	Apply 8 lbs P ₂ O ₅ /acre to the soil for every 100 boxes/acre of fruit produced during the current year. Sample leaves and soil again in 12 months and re-evaluate.
Low	Less than sufficient	Apply 12 lbs P_2O_5 /acre to the soil for every 100 boxes/acre of fruit produced during the current year. Sample leaves and soil again in 12 months and re-evaluate.
Deficient	Less than sufficient	Apply 16 lbs P_2O_5 /acre to the soil for every 100 boxes/acre of fruit produced during the current year. Sample leaves and soil again in 12 months and re-evaluate.

'These recommendations do not pertain to foliar-applied P.

Potassium – Apply K_2O equal to N rate; monitor with leaf analysis.

Bearing trees

- Calcium Monitor pH
- Magnesium Monitor soil tests and leaf analysis.
- Micronutrients -

Table 8.4. Recommended methods, timing, and rates for micronutrient application to citrus groves.

		Mn	Zn	Cu	В	Fe					
N 1 1	Foliar	Yes	Yes	Yes	Yes	No					
Method	Soil	Yes1	No	Yes	Yes	Yes					
These	Foliar	When spring flush leaves reach full expansion									
Timing	Soil	Anytime as needed									
		lbs metallic equivalent/acre									
Rates	Foliar	3 to 5	3 to 5 5		1/4						
	Soil	7 to 10		5	1	See below ²					

'Soil applications of Mn are not recommended on calcareous soils.

²Acid soil: Fe-EDTA, ²/₃ oz elemental Fe/tree; Calcareous soil: Fe-EDDHA, 1³/₄ oz elemental Fe/tree.

Monitoring citrus nutrition

- Once per year
 - Late summer leaf and soil samples
 - You want 6-month-old spring flush leaves
- Leaf/soil testing is a Best Management Practice (BMP)

Soil and leaf testing

Table 4.1. Summary of the usefulness of soil testing and leaf tissue testing as citrus nutrient management tools.

Property or nutrient	Soil testing	Leaf testing
рН	√	
Organic matter	\checkmark	
Ν		√
Р	√	√
K		√
Ca	√	√
Mg	√	√
Cu	√	√
Zn, Mn, Fe, B		√

A line and a sugar

Soil test interpretations

Table 4.4. Interpretation of soil analysis data for citrus using the Mehlich 1 (double-acid) extractant.

	Soil test interpretation									
TI	Very Low	Low	Medium	Medium High						
Element	mg/kg (ppm) ¹									
Р	< 10	<u>10 – 15</u>	<u>16 – 30</u>	31 - 60	> 60					
Mg ²		< 15	15 - 30	> 30						
Ca ²			250 ³	> 250						
Cu			< 25 ⁴	25 - 50 ⁵	> 50 ⁶					

¹parts per million (ppm) x 2 = lbs/acre.

²A Ca-to-Mg ratio greater than 10 may induce Mg deficiency.

³The Univ. of Florida Extension Soil Testing Laboratory does not interpret extractable Ca.

Work with Florida citrus trees suggests that a Mehlich 1 soil test Ca of 250 mg/kg or greater is sufficient.

⁴Cu toxicity is unlikely even if soil pH is less than 5.5.

⁵Cu toxicity is possible if soil pH is less than 5.5.

⁶Cu toxicity is likely unless soil pH is raised to 6.5.

Leaf test interpretations

Table 4.2. Guidelines for interpretation of orange tree leaf analysis based on 4 to 6-month-old spring flush leaves from non-fruiting twigs (Koo et al., 1984).

Element	Unit of measure	Deficient	Low	Optimum	High	Excess
N	%	< 2.2	2.2 - 2.4	2.5 - 2.7	2.8 - 3.0	> 3.0
Р	%	< 0.09	0.09 - 0.11	0.12 - 0.16	0.17 - 0.30	> 0.30
K	%	< 0.7	0.7 - 1.1	1.2 - 1.7	1.8 - 2.4	> 2.4
Ca	%	< 1.5	1.5 - 2.9	3.0 - 4.9	5.0 - 7.0	> 7.0
Mg	%	< 0.20	0.20 - 0.29	0.30 - 0.49	0.50 - 0.70	> 0.70
Cl	%			< 0.2	0.20 - 0.70	> 0.701
Na	%		-		0.15 - 0.25	> 0.25
Mn	mg/kg or ppm ²	< 18	18 - 24	25 - 100	101 - 300	> 300
Zn	mg/kg or ppm	< 18	18 - 24	25 - 100	101 - 300	> 300
Cu	mg/kg or ppm	< 3	3 - 4	5 - 16	17 - 20	> 20
Fe	mg/kg or ppm	< 35	35 - 59	60 - 120	121 - 200	> 200
В	mg/kg or ppm	< 20	20 - 35	36 - 100	101 - 200	> 200
Mo	mg/kg or ppm	< 0.05	0.06 - 0.09	0.10 - 2.0	2.0 - 5.0	> 5.0

¹Leaf burn and defoliation can occur at Cl concentration >1.0%. ²ppm = parts per million.

Alle in

Fresh fruit production considerations

A Section in

Table 3.4. Increasing levels of nutrients within recommended ranges result in the responses shown, whereas excess nutrition can reduce fruit yield and quality (Koo, 1988). Key to symbols: Increase (+), Decrease (-), No change (o), No information (?).

Magguramont	Macronutrient element				Micronutrient element				Irrigation		
Measurement	Ν	Р	Κ	Ca	Mg	Mn	Zn	Cu	Fe	В	Imgation
Juice quality											
Juice content	+	+	0	0	0	0	0	0	0	0	+
Soluble solids (SS)	+	0	_	0	+	0	0	0	+	0	_
Acid (A)	+	_	+	0	0	0	0	0	0	0	_
SS/A ratio	_	+	_	0	+	0	0	0	0	0	_
Juice color (red)	+	0	_	?	?	?	?	?	?	?	0
Juice color (yellow)	+	0	_	?	?	?	?	?	?	?	+
Solids/box	+	0	_	0	+	0	0	0	+	0	_
Solids/acre	+	+	+	0	+	0	0	0	0	0	+
External fruit quality											
Size	_	0	+	0	+	0	0	0	0	0	+
Weight	_	0	+	0	+	0	0	0	0	0	+
Green fruit	+	+	+	0	0	0	0	0		0	+
Peel thickness	+	_	+	0	_	0	0	0	0	0	_
Peel blemishes											
Wind scar	_	+	0	?	?	?	?	?	?	?	+
Russet	_	_	0	?	0	0	0	0	0	0	0
Creasing	+	+	_	?	?	?	?	?	?	?	0
Plugging	_	0	_	?	?	?	?	?	?	?	_
Scab	+	0	0	?	?	?	?	?	?	?	+
Storage decay											
Stem-end rot	_	0	-	?	?	?	?	?	?	?	-
Green mold	_	0	0	?	?	?	?	?	?	?	+
Sour rot	0	ο	0	?	?	?	?	?	?	?	0

The most important nutrient mgt practices affecting fruit quality are <u>irrigation</u> and <u>N-P-K</u>.

Nitrogen effects (grapefruit)

Potassium deficiency

Section Section

Phosphorus deficiency

Section Sector

Fertilization for fresh fruit quality

- Use minimum N rate required to achieve desired yield.
- Fertilize for optimum K nutrition.

A Beaching

- Soil applications can be supplemented with foliar applications to increase fruit size.
- Monitor P nutrition with leaf and soil analysis.

Climate considerations

de la contrata

Climate affects fertilization timing

- Good tree health and nutrition will help trees withstand freezing temperatures.
- "Pushing" trees (south FL) vs. inducing dormancy (north FL).
 - What causes a tree to grow?

A les and and

- Fertilization??... NO!
- Warm days and rainfall/irrigation... YES!

Climate affects fertilization timing

- Heat and moisture trigger tree growth... but availability of nutrients influences the extent of that growth.
- Cutting off fertilizer in the fall will...
 - Allow summer growth to harden off.

A Section Section

- Minimize fall growth that could be hurt by a freeze.
- Induce dormancy.
- No fertilizer in north FL after September 15th (some say Aug 30).

Final thoughts

- SL 253 recommendations developed before HLB disease appeared.
- Follow citrus nutrient BMPs.
 - Right source, rate, time, and place.

A Section 199

• <u>Water</u> (rainfall, irrigation) has more influence on tree growth and fruit yield/quality than nutrition.

Thank you!

UF IFAS Extension UNIVERSITY of FLORIDA

All and the second