GOOD, BAD, AND UGLY FOOD SAFETY PRACTICES

Matt Lollar & Bob Hochmuth

University of Florida/IFAS Extension

WORKER HEALTH & HYGIENE

Can carry human pathogens

 Shigella, Hepatitis A, Norovirus, and others

Can spread human pathogens

- Harvest and pack with their hands
- Fecal-oral route

Require training to reduce risks

- Proper handwashing
- How to handle illnesses and injuries

SOIL AMMENDMENTS

- Untreated biological soil amendments of animal origin are considered high risk since they have not been treated to reduce or eliminate pathogens
- All of the following soil amendments would be considered untreated:
 - Raw manure
 - 'Aged' or 'stacked' manure
 - Untreated manure slurries
 - Untreated manure teas
 - Agricultural teas with supplemental microbial nutrients
 - Any soil amendment mixed with raw manure

- Compositing is a <u>controlled</u> biological process that decomposes organic matter and reduces pathogens
- Temperature is the primary method of pathogen reduction for thermophilic composting; however, chemical and biological factors also contribute
- Only a compositing process that has been scientifically validated ensures pathogen reduction
- Process monitoring and recordkeeping are critical to ensuring the compost is adequately treated

Must use a scientifically valid process:

- Aerated static composting: aerobic, minimum 131°F (55°C) for 3 days, followed by curing with proper management to ensure elevated temperatures throughout all materials
- Turned composting: aerobic, minimum of 131°F (55°C) for 15 days, minimum 5 turnings, followed by curing
- 3. Other scientifically valid, controlled composting processes

• Minimize runoff, leaching, and wind drift to reduce contamination of crops, water sources, and handling areas

by soil amendments

- Cover piles
- Build berms to prevent runoff
- Do not store in locations that are likely to experience runoff or areas that are close to water sources
- Keep raw manure and finished compost in separate areas to prevent cross-contamination
- Minimize animal access to compost piles

Steps you should take to reduce risks:

- Preferentially apply soil amendments containing manure to crops not intended for fresh consumption
- Maximize the time between application and harvest
- Do not contact the edible portion of the crop during application.
- Do not side-dress with raw manure
- Minimize risks to adjacent produce crops if you are field spreading manure

POSTHARVEST HANDLING AND SANITATION

- Cleaning: Physical removal of dirt (soil) from surfaces which can include the use of clean water and detergent
- Sanitizing: Treatment of a cleaned surface to reduce or eliminate microorganisms

Important point: You cannot sanitize a dirty surface.

Cleaning always comes first!

POSTHARVEST HANDLING AND SANITATION

- Continue produce safety practices by keeping things clean during harvest and postharvest handling
- Consider everything that touches or impacts produce
 - Packing and picking containers
 - Packing equipment
 - Hands and clothing
 - Postharvest water
 - Buildings (i.e., coolers, storage areas)
 - Transport vehicles

POSTHARVEST HANDLING AND SANITATION

- Areas outside of or adjacent to the packing area
- Includes loading docks, warehouses, manure or compost piles, and livestock operations
- May provide opportunities for contamination to enter the packing area

- Workers must never harvest produce destined for fresh market that is contaminated with feces
- Workers must never harvest or distribute dropped covered produce
- Worker health and hygiene practices should include:
 - Wearing clean clothing and footwear
 - Following glove, hairnet, and jewelry policies
 - Using worker break areas, handwashing stations, and restrooms

During the growing season:

- Monitor for feces and evidence of intrusion
- Evaluate the risk of fecal contamination on produce (e.g., tree vs. root crop)
- Consider past observations and wildlife attractants

Immediately prior to harvest

- Monitor for fecal contamination, signs of animal activity (e.g., trampling, rooting, feeding, tracks)
- Assess risks and decide if the crop or a portion of the crop can be safely harvested

- Pathogens may be transferred between livestock and wildlife
- Pathogen loads in domesticated animals may be species specific and impacted by animal management practices on the farm
- Shared grazing lands and water sources may offer contamination pathways among species

- Should be excluded from produce fields
- Visitors to the farm should be instructed to leave their pets at home
- Farms with petting zoos should have handwashing sinks available and signage instructing visitors of the food safety policies

- 1. Do not harvest any produce that may be contaminated
- 2. Determine if no-harvest buffer zones around the contamination are sufficient to reduce risk to allow harvest of the <u>uncontaminated</u> produce
 - Suggested no-harvest buffer zones vary from a 0-25 foot radius, depending on the crop, climate, contamination event, and harvest equipment
- 3. Consider other corrective actions that could reduce contamination risks

- 4. Make a decision about what to do with the contamination
 - Remove, leave, bury, or use other strategies
 - Consider risks that could result from these actions (e.g., cross-contamination of equipment with feces)
- 5. Document all actions
 - Monitoring, deterrence, and corrective actions

AGRICULTURAL WATER

- Assess nearby land use and upstream water activities to identify risks
 - Work with neighbors and local watershed groups to understand and minimize identified risks
- Assess and address runoff risks
 - Develop diversion ditches, berms or containments to minimize environmental runoff, runoff from manure and compost piles, or runoff from livestock feeding areas
- Monitor and control animal access to irrigation water sources where practical (e.g., irrigation reservoirs)

AGRICULTURAL WATER

- Inspect well to ensure it is in good condition
- Inspect wellhead to ensure it is properly capped and elevated
- Be sure land slopes away from wellhead to prevent runoff contamination into the well
- Install backflow prevention devices

