Understanding Greenhouse Environmental Controls

Jeremy Pickens
Auburn University

Disclaimer

- Get Help
- Don't make an expensive mistake

What does it cost to build a commercial greenhouse?

Cost to build one free standing 30 x 96 Greenhouse (2880 ft2)

	Item	Qty	Unit cost	Cost
Structure	Construction Cost	1	\$ 12,500	\$ 12,500
	Electrical	1	\$ 1,500	\$ 1,500
	Greenhouse frame	1	\$ 8,000	\$ 8,000
	Plastic covering	1	\$ 1,000	\$ 1,000
	Locking system	1	\$ 225	\$ 225
Cooling	Half Fans	4	\$ 120	\$ 480
12.182.0930.09.0 3 .4.	Exhaust Fans	2	\$ 1,270	\$ 2,540
	Evaporative Cooling System	1	\$ 1,912	\$ 1,912
	Cooling pads	1	\$ 1,000	\$ 1,000
	Environmental control controls	1	\$ 2,000	\$ 2,000
	Wall Vent	1	\$ 2,000	\$ 2,000
	Shutters	1	\$ 198	\$ 198
Heaters	200,000 BTU Heaters and Accessories	1	\$ 1,000	\$ 1,000
Total				\$ 34,355

What does it cost to own a greenhouse?

\$ 35,000.00
\$ 28,000.00
5.50%
\$ 305.00
\$ 1,200.00
\$ 3,000.00
\$ 350.00
\$ 8,210.00
\$ 684.17
2880
\$ \$ \$ \$ \$

Does not include: Labor, growing system, marketing, and chemicals

Cost per square foot per month

0.24

Buying Used Frames

The cost of poor design

90% Mortality, Output 90%

Revenue, Operating and Fixed Costs and Net Return

	Item	Qty	Uni	it cost	Cost	
I. Revenue	Heads of lettuce	38,271.3	\$	1.50	\$ 57,407	

Enterprise Budget 30 x 96 NFT Lettuce Greenhouse

		1	[tem	Qty	τ	Jnit cost		Cost
I. Revenue		Heads of lett	uce	38,271	\$	1.50	\$	57,407
II. Variable Cost								
	Plant Materials	Seeds (cans	of 5000)	9		100		850
		Oasis (boxes	3)	9		90		765
		Fertilizer (co	st per head)	47,248		0.023		1,087
	Labor	(25 MH x 5	52 weeks)	1,300		10		13,000
	Energy	Liquid Propa	me	1		3,000		3,000
		Fans (KW fo	or 9 months	10,950		0.1		1,095
		Blower (KW	for 12 months)	14,400		0		1,440
		Cooler (\$/mo	onth)	12		65		780
	Packing	Boxes		2,551		2		5,103
		Box Liners (rolls)	5		30.00		153
Interest on Operating Cos	ts			20,455		10%		1,534
	Total Variable Cost						\$	28,808
III. INCOME ABOVE	VARIABLE COSTS				\$	28,599		
IV. Fixed Costs	Depreciation	\$	13,205	0.50	\$	6,602		
	Interest on loan	\$	1,477	0.50	\$	739		
	Manager/Markete	\$	520	18.00	\$	9,360		
Total Fixed costs	_				\$	16,701		
V. TOTAL COSTS					\$	45,509		
	Total cost per h	ead			\$	1.189		
VI. Net Return Above	: Operating Costs				\$	28,599		
Net Return: Abov	e All Costs				\$	11,898		
*assumptions - 90%	capacity sold 90%	mortality '	35 day eron eye	le 5% inte	roct	on loan 1	15 h	eade per ho

^{*}assumptions - 90% capacity sold, 90% mortality, 35 day crop cycle, 5% interest on loan, 15 heads per box

90% Mortality, 75% Output

Revenue, Operating and Fixed Costs and Net Return

Enterprise Budget 30 x 96 NFT Lettuce Greenhouse

		10	em	Qty	ι	Jnit cost	Cost
I. Revenue		Heads of lettu	ce	31,893	\$	1.50	\$ 47,839
II. Variable Cost							
	Plant Materials	Seeds (cans o	f 5000)	7		100	709
		Oasis (boxes)	,	7		90	638
		Fertilizer (cost	per head)	47,248		0.023	1,087
	Labor	(25 MH x 52	2 weeks)	1,300		10	13,000
	Energy	Liquid Propan	e	1		3,000	3,000
		Fans (KW for	9 months	10,950		0.1	1,095
		Blower (KW	for 12 months)	14,400		0	1,440
		Cooler (\$/mor	nth)	12		65	780
	Packing	Boxes		2,126		2	4,252
		Box Liners (ro	olls)	4		30.00	128
Interest on Operating Costs				19,596		10%	1,470
	Total Variable Cost						\$ 27,598
III. INCOME ABOVE VA	ARIABLE COSTS				\$	20,241	
IV. Fixed Costs	Depreciation	\$	13,205	0.50	\$	6,602	
	Interest on loan	\$	1,477	0.50	\$	739	
	Manager/Markete	\$	520	18.00	\$	9,360	
Total Fixed costs	-				\$	16,701	
V. TOTAL COSTS					\$	44,299	
	Total cost per he	ead			\$	1.389	
VI. Net Return Above:	Operating Costs				\$	20,241	
Net Return: Above	All Costs				\$	3,540	

^{*}assumptions - 90% capacity sold, 90% mortality, 35 day crop cycle, 5% interest on loan, 15 heads per box

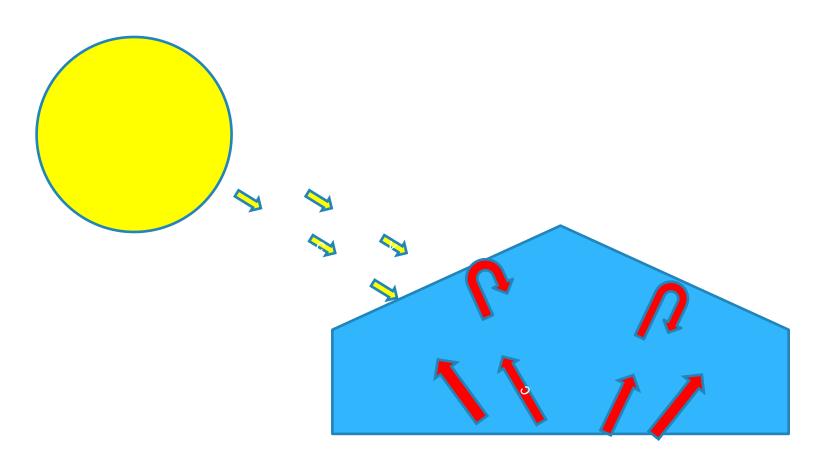
90% Mortality, 50% Output, ½ Labor

Revenue, Operating and Fixed Costs and Net Return

	ltem	Qty	Uni	t cost	Cost	
I. Revenue	Heads of lettuce	21,261.8	\$	1.50	\$ 31,893	

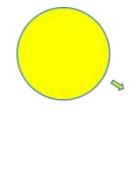
Enterprise Budget 30 x 96 NFT Lettuce Greenhouse

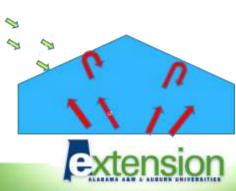
		Ite	em	Qty		Unit cost	Cost
I. Revenue		Heads of lettuc	ce	21,262	\$	1.50	\$ 31,893
II. Variable Cost							
	Plant Materials	Seeds (cans of	(5000)	5		100	472
		Oasis (boxes)		5		90	425
		Fertilizer (cost	per head)	47,248		0.023	1,087
	Labor	(25 MH x 52	weeks)	520		10	5,200
	Energy	Liquid Propane	e	1		3,000	3,000
		Fans (KW for	9 months	10,950		0.1	1,095
		Blower (KW f	or 12 months)	14,400		0	1,440
		Cooler (\$/mon	th)	12		65	780
	Packing	Boxes		1,417		2	2,835
		Box Liners (ro	lls)	3		30.00	85
Interest on Operating Costs				12,315		10%	924
	Total Variable Cost						\$ 17,343
III. INCOME ABOVE VA	ARIABLE COSTS				\$	14,550	
IV. Fixed Costs	Depreciation	\$	13,205	0.50	\$	6,602	
	Interest on loan	\$	1,477	0.50	\$	739	
	Manager/Markete	\$	520	18.00	\$	9,360	
Total Fixed costs	Ū				\$	16,701	
V. TOTAL COSTS					\$	34,044	
	Total cost per he	ead			\$	1.601	
VI. Net Return Above:	VI. Net Return Above: Operating Costs						
Net Return: Above	All Costs				\$	(2,151)	


 $[\]hbox{*assumptions - 90\% capacity sold, 90\% mortality, 35 day crop cycle, 5\% interest on loan, 15 heads per box}$

How does a greenhouse work?

How do greenhouses work


Heat Energy


- (BTU) British Thermal Unit
 - The amount of energy needed to raise 1 lb. of water 1 °F

Greenhouses Get Hot!

- On a clear beautiful summer day
- 30 x 96 ft. greenhouse = 1 Million BTU's per hour
- Per Hour
 - 10 gallons of LP
 - 10 therms of NG
 - -3 car tires
 - 50 kitchen ovens running

But plants like it hot. Right?

- Most plants become less productive >85°F
- Crops have an <u>optimum</u> operating range

Greenhouse Crop	Day Temp (°F)	Night Temp (°F)
Tomato	70 - 82	64-60
Lettuce	62 - 75	57 (50)
Cucumber	78.8 - 84.2	70

Too Hot or Too Cold

Tomato

- > 85°F lycopene is inhibited and pollen production is reduced
- If night temperatures are <50 °F they will not set fruit.
- Flowers will abort if > 60 to 64 °F

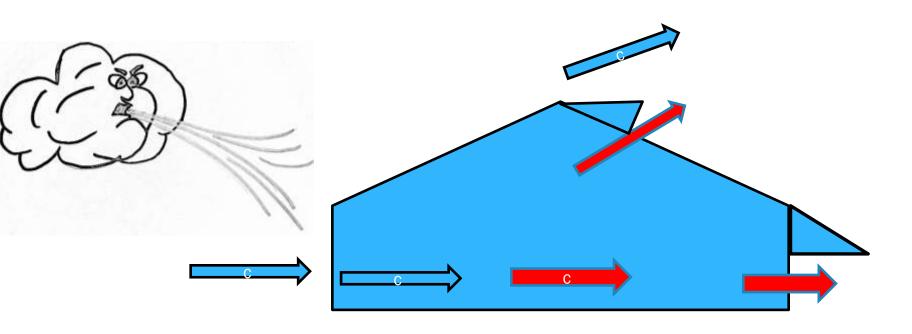
Lettuce

- Bolting
- Tip burn
- Bitterness
- Increases pest pressure

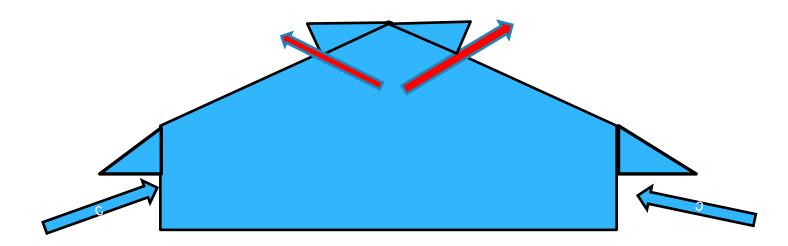
How do you reduce greenhouse temperatures

- Ventilation
 - Natural
 - Mechanical
- Shade
- Evaporative Cooling

Natural Ventilation:


- Wind is the major driving force behind natural ventilation
- Even a small amount of wind can be effective in pushing air through the greenhouse or high tunnel
 - 2 to 3 mph

Natural Ventilation: Wind


- Pushing effect
- Pulling (vacuum)

Natural Ventilation: Buoyance

- Hot air rises because it is less dense
- Water vapor is less dense than air

Natural Ventilation

Vent to floor ratio

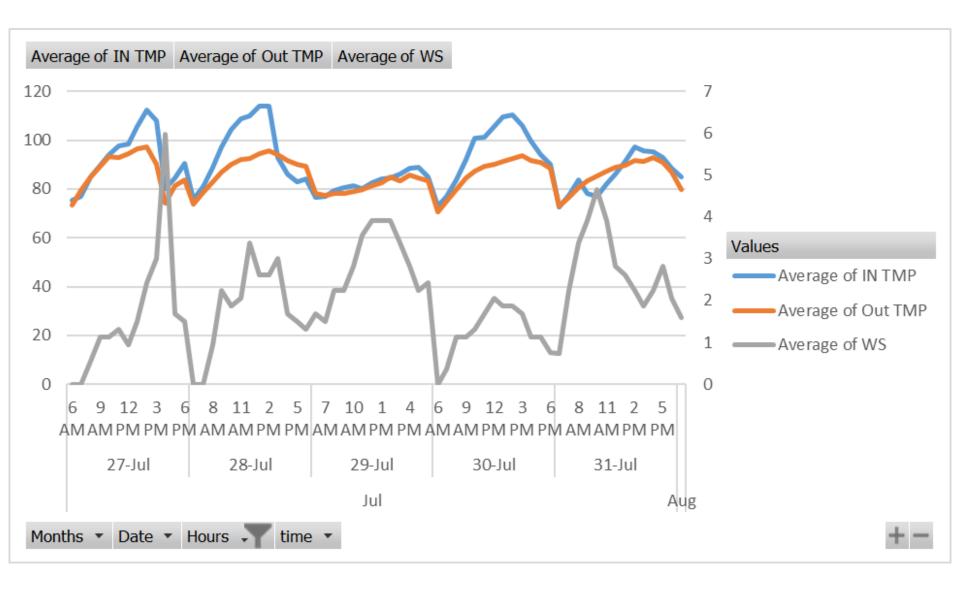
- ASAE recommends
 ventilation area = 15 to
 25% of floor area
- 60 air exchanges per hour

Greenhouse Height

- The taller the house, the better
 - Minimum of 8'
 - ->12' even better
- The taller the house the more expensive

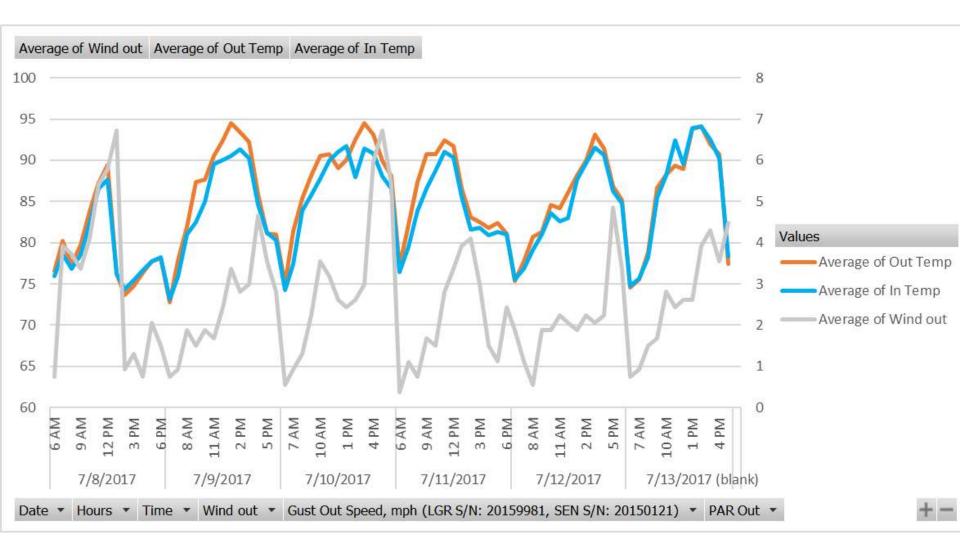
30 x 96 Greenhouse

Gutter		Exchanges	Exchanges	
Height	Total Cubic Feet	per hour	per minute	Vent:Floor
4	25084.8	275.5	4.6	35%
8	36604.8	377.7	6.3	70%
12	48124.8	430.9	7.2	105%
16	59644.8	463.5	7.7	140%



5 Bay (30x96) Gutter Connected Greenhouse

Gutter		Exchanges	Exchanges	
Height	Total Cubic Feet	per hour	per minute	Vent:Floor
4.0	125424.0	55.1	0.9	14%
8.0	183024.0	75.5	1.3	27%
12.0	240624.0	86.2	1.4	41%
16.0	298224.0	92.7	1.5	55%



Mechanical Ventilation: Exhaust Fans

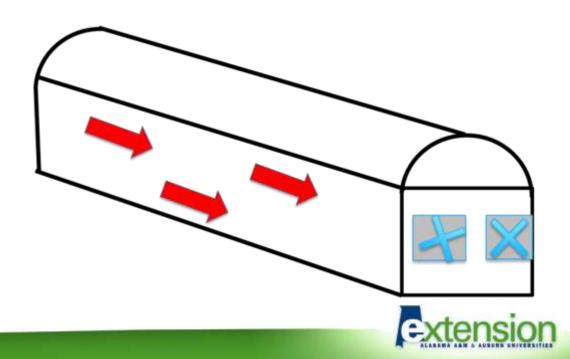
- Pulling not pushing
- 36" to 56" blades
- $\frac{1}{2}$ HP 2 HP motors
- Single or 3 Phase

Fan Sizing

Rules of Thumb

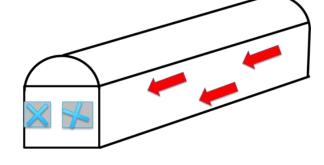
 Fans should not be spaced more than 25' apart

Rules of Thumb


• Avoid pulling over 150 ft.

Rules of Thumb

Exhaust in the same direction as the prevailing wind



Rules of thumb

- Vents should be 1.25 to 1.5 time the combined area of the exhaust fans.
- 25' clearance for exhaust outside of GH

Fan Sizing

- The goal is uniform and adequate air flow
- Goal 1.0 to 1.5 times the volume of the greenhouse per minute
- The volume calculation may only include height up to 8 to 10 ft.
- Length x width x 8 ft. = GH volume in ft³

Fan Sizing

- GH volume = 23,040 ft³ x 1.5 exchanges per minute
 - Exchange rate 34,500 ft³ ·min.
- Exchange rate ÷ Fan output = # of fans
 needed

Table 1. Examples of fan performance data.

Blade size	Motor	Fan output (CFM)			
(inches)	HP	0.05-inch SP¹	0.10-inch SP		
36	1/2	10,308	9,553		
	3/4	11,911	11,253		
48	3/4	18,180	16,989		
	1	20,628	19,563		

¹SP = static pressure (measured in inches of water)

Fan Check

- Anemometer and measure wind speed on output side of fan
- 14 mph x 1.5 (fps) = 21 fps
- 21 fps x 60 sec/min = 1260 fpm
- $48" = 16ft^2$
- $16 \text{ ft}^2 \times 1260 \text{ fpm} = 20,160 \text{ CFM}$

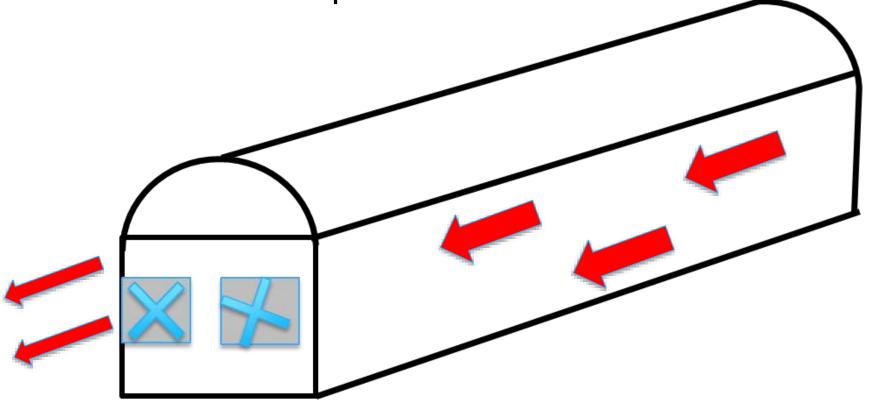
More is better right?

 Recommended not going over 3.3 fps or 2.25 mph

Fan Consideration

- Use 3 phase motors if available.
- Two speed fans
- Variable speed fans

Exclusion Systems and Fans



Fan Vented Greenhouse

• 7-8°F rise in temp from entrance to exit

Evaporative Cooling Systems

Cellulose Pads

- Cellulose pads
- 4" operate best with 250 fpm
- 6" operate best at 400 fpm

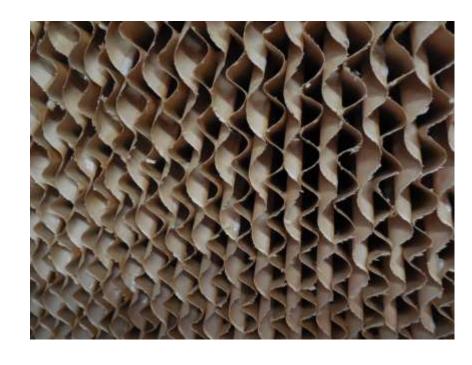
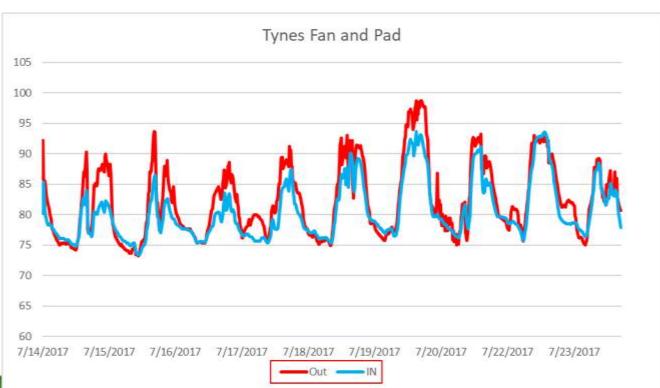


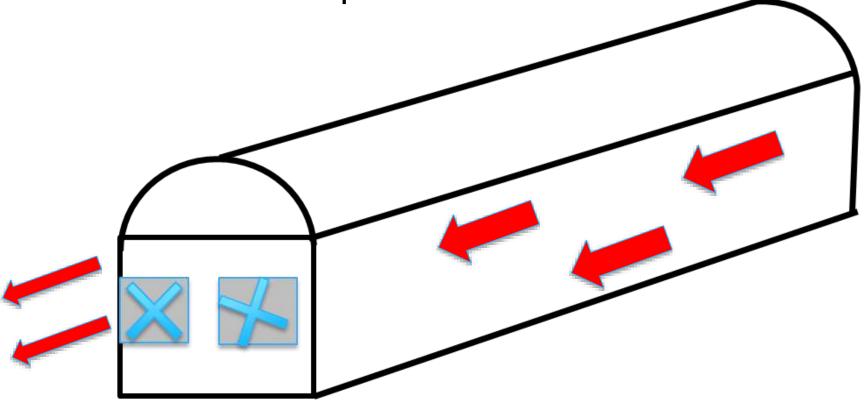
Table 1. Percent of hours within Wet Bulb Depression Ranges (WBD)

Percent of						
WBD (F°)	hours					
0	3%					
1-5	33%					
6-10	23%	<u></u>				
11-15	25%	= 64%				
15-20	16%					


WBD (F°) = Dry Bulb Temperature - Wet Bulb Temperature and represents the cooling potential that can be reached through evaporative cooling

^{**}Calculated from historic weather data from weather station located at the Mobile Regional Airport.

^{***}Only includes hours from 11:00 AM to 3:00 PM during the Month of July in 2014.



Fan Vented Greenhouse

7-8° F rise in temp from entrance to exit

Shade

- Shade cloth comes in variety of type and colors
- Shade percentage
 - 30, 50, 60, and 80 %
 - > 50 for vegetable production
- Shade % does not correlate to temperature reduction....a 50% shade doesn't reduce temperature by 50%

Mist Systems

Fan Vented Greenhouse

7-8° F rise in temp from entrance to exit

Louvers

Wall Vents

Roll-up sides and fans

Retractable Structures

Greenhouse Type	Priced for area (ft	\$/ft ²
Gutter connected - fan and pad	13,000	6.2
Free standing- fan and pad	2,880	6.5
Cravo retractable roof	23,616	4.36
Cravo retractable roof	53,136	2.8
High tunnel	2,880	2.18

Humidity

- High humidity = disease
- Condensation
- Ways to reduce condensation
 - Horizontal Flow Fans
 - Vent the greenhouse

Jet Fan

Greenhouse Heating

Greenhouse Heating

- Heat retention
 - Well sealed house
 - Check runner boards and seal all cracks
 - Make sure fan and louvers shut
 - Double Poly Houses
 - Increases heat retention by 20-30%.

Calculating Heat Loss

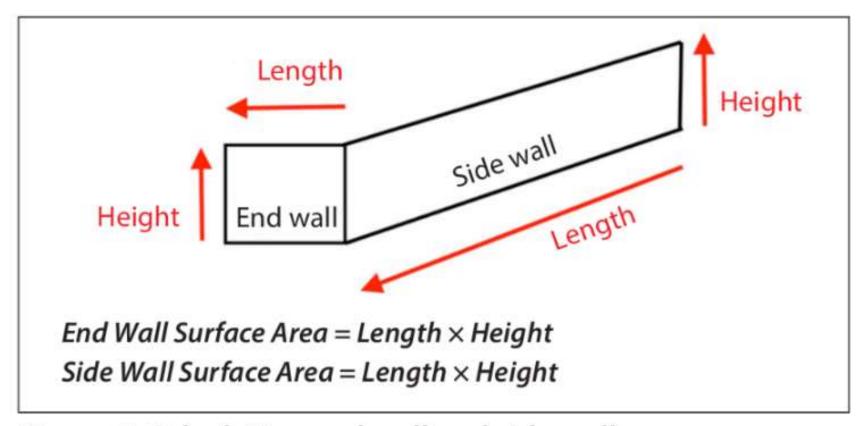


Figure 5. Calculating end wall and side wall area.

Calculating Heat Loss

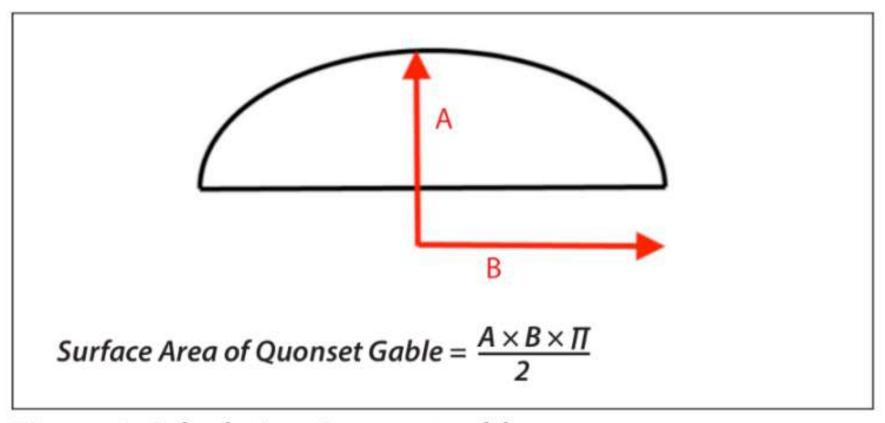


Figure 6. Calculating Quonset gable area.

U- Value (BTU-ft2-°F)	
Single Poly	1.15
Glass	1.13
Double Poly	0.7

Table 1. Greenhouse BTU Requirements 62160 ft² Greenhouse Range, Bonnie Plant Farm, Union Spring AL.

				•	
Surface Area	Are a ft ²	Covering	U-value	BTU Loss (without curtain)	BTU Loss (with curtain)
Roof	71,040.00	Double poly (w/curtain)	0.8 (0.5)	56,832.00	35,520.00
Gables	4,665.00	Dynaglass (w/curtain)	1.2 (0.75)	5,598.00	3,499.00
Endwalls	8,400.00	Dynaglass	1.2	10,080.00	10,080.00
Sidewalls	2,960.00	Dynaglass	1.2	3,552.00	3,552.00
			T	otal 76,062.00	52,651.00

Energy Curtains

Alternative Fuels

Cost associated with heat source						
Fuel	Cost	Unit	\$/MMBT U			
Propane	\$2.30	gal	\$30.00			
Natural Gas	\$1.34	Therm	\$8.84			
Geothermal	-	-	\$5.58			
Wood Pellets	\$250	ton	\$14.5			

Take an integrated approach

Table Francis				an Carina	AL 201	1 2012		
Table . Frequency of outside temperatures Union Spring, AL. 2011-2012								
	24 Hour Period			Night Only 6:00 AM - 6:00 PM				
	Dec 1	4 - Jan 18	Jan 19-	-Feb 15	Dec 14 - Jan 18		Jan 19-Feb 15	
Outside	No. of	%Total	No. of	Total	No. of	% Total	No. of	% Total
Temperature F°	Hours	Hours	Hours	Hours	Hours	Hours	Hours	Hours
10-15	0	0%	0	0%	0	0%	0	0%
15-20	8	1%	2	0%	6	2%	1	0%
20-25	10	1%	12	2%	8	2%	10	3%
25-30	34	4%	28	4%	18	5%	20	6%
30-35	44	5%	30	4%	36	9%	21	7%
35-40	69	8%	44	7%	42	11%	31	10%
40-45	96	11%	60	9%	67	17%	36	12%
45-50	129	15%	88	13%	63	16%	54	18%
50-55	132	15%	90	13%	59	15%	43	14%
55-60	112	13%	88	13%	44	11%	37	12%
60-65	101	12%	120	18%	36	9%	38	12%
65-70	73	9%	83	12%	11	3%	17	6%
70-75	41	5%	20	3%	0	0%	0	0%
75-80	5	1%	7	1%	0	0%	0	0%
Total	854	100%	672	100%	390	100%	308	100%

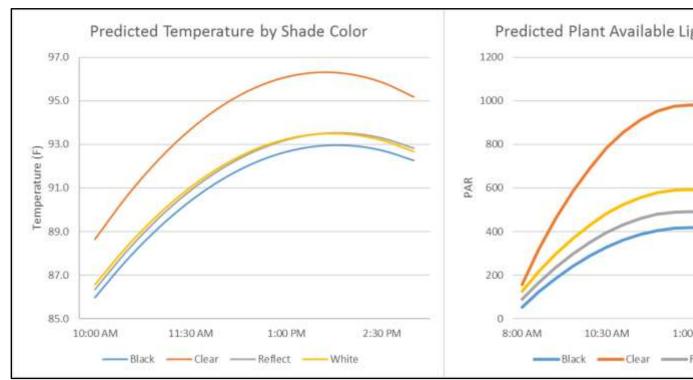
- Let gas make up the difference
- 86% of hours were > 35°F
- 46% of hours were > 55°F

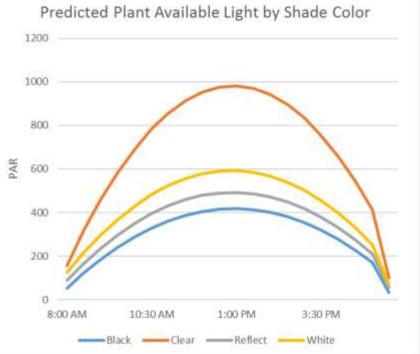
Heater Considerations

- Advantages of multiple units
- Make sure your house is tight
 - Gaps around doors, and runner boards
 - Louvers operational
 - Roll-up sides
 - Get a meter
- Avoid unvented heaters

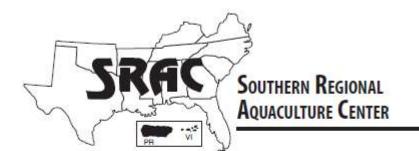
Controllers

Homemade systems





Research at Auburn: Shade Evaluation


Reducing Heating Cost

Controlling the Greenhouse Environment for Aquaponics

Jeremy M. Pickens1 and Jason Danaher2

Controlling the greenhouse environment is challenging because greenhouses gain heat during the day and lose it rapidly to low nighttime temperatures. The principles behind managing a greenhouse environment are the same, regardless of its purpose. While this fact sheet explains these principles, the reader should seek professional expertise when designing a greenhouse and sizing environmental controls because the capital cost is too great to risk any design mistakes.

Ventilation and cooling

environment can be the difference between success and failure in any greenhouse business.

Natural ventilation

Natural ventilation capitalizes on air movement to push and pull hot air out of the greenhouse through open wall sections or the roof. Wind is the driving force behind most natural ventilation. Even a small amount of wind can be effective in pushing air through the greenhouse, over a crop canopy, and out through vents installed on end walls, side walls or through the roof. Warm, humid

Questions? jeremy.pickens@auburn.edu (334) 319-3829

