Lenny Wells UGA Horticulture

ecan Ferthization

The state of the second s

Pecans are a Perennial Crop Not an Annual Crop

- Respond differently to inputs
- Orchard soils are not tilled
- Row Crops grow from seed or young plants
 - Birth, Growth, Death in 6-8 months
 - Everything you do to annual crops affects it that year
 - Effects on perennial crops are often delayed and long term

Leaf Sampling

- Sample trees between July 7th and August 7th.
- Use terminal shoots exposed to the sun.
- Collect leaflets from all sides of the tree.
- Avoid leaflets damaged by insects and diseases.

Soil Sampling

- Useful for pH and toxicities
- Late Fall/Winter
- Sample uniform area
- 1 pint/sample (15-20 cores) over large area
- Sample to 8" depth

- Maintaining a balance among nutrients is essential.
- Excessive application of a nutrient will not increase growth or production and may cause other problems.
- Typically, the only nutrients needed annually are N and Zn

Leaf Tissue Results

	Desired Range	Mean	% Low	% High	Sample Range
Leaf N	2.5-3.3%	2.77%	3	0	2.58-3.09
Leaf P	0.12-0.3%	0.14%	0	0	0.13-0.18
Leaf K ¹	1.25-2.5%	1.26%	45	0	1.04-1.50
Leaf Ca	1.0-1.5%	1.84%	0	48	1.37-2.36
Leaf Mg ²	0.35-0.6%	0.53%	7	0	0.32-0.66
Leaf S	0.25-0.5%	0.24%	3	0	0.22-0.28
Leaf Fe	50-300ppm	71.7ppm	0	0	50-142
Leaf Zn	50-100ppm	125ppm	7	34	41-292
Leaf B	50-100ppm	84ppm	0	20	50-146
Leaf Cu	6-30ppm	9.8ppm	0	0	6-14
Leaf Mn	100-800ppm	562ppm	0	21	190-1251
Leaf Ni	?	2.5ppm	?	?	1-11

Soil Sample Results

	Desired Range (lbs/A)	Mean (lbs/A)	% Low	% High	Sample Range (lbs/A)
Soil P	30-60	98.3	0	90	48-183
Soil K	100-150	153	0	34	94-361
Soil Ca	400-900	988	3	48	192-2241
Soil Mg	90-100	184	7	90	35-436
Soil S	10-50	26.6	3	0	4-41
Soil Fe	12-25	22.6	3	24	8-76
Soil Zn	15-20	25	28	55	3.9-55.3
Soil B	0.5-1.0	0.99	41	14	0.22-6.0
Soil Cu	0.5-1.5	1.1	14	10	0.2-7.2
Soil Mn	15-40	31.9	28	7	13-45
Soil Ni ¹	?	1.26	N/A	N/A	1-7
pН	6.0-6.5	5.96	41	12	5.3-7.0

How Often Should You Lime the Orchard?

рН	6.0-6.5	5.96	41	12	5.3-7.0
----	---------	------	----	----	---------

- High N rates can lower pH in upper soil layers (2-3") in the short term
- Lime applied to surface raises soil pH in upper 2-3" only
- Once soil pH reaches 6-6.5 below surface layer, it tends to remain there for a long time
- There is <u>NO</u> research-based evidence for increased yield and growth of mature pecan trees with lime application (Hunter and Hammar, 1947; Johnson and Hagler, 1955; Hagler et al. 1957; Brooks, 1964; Hunter, 1965; Worley et al. 1972)
- Excessive liming can lead to Zn deficiency, mouse ear, and problems with K uptake
- Lime when pH is <6.0 or every 3rd year <u>at most</u> on SE Coastal Plain soils (6.0-6.5); Keep N rates between 75-125 lbs/acre
- Savings: \$20/acre

Fertilization Recommendations for Young Trees • Focus on P,K, Zn---not N!

Rate of 10-10-10/per tree

Year	April	June
1	0	0.5-1 lb
2	1-2 lbs	1-2 lbs
3	2-3 lbs	2-3 lbs
4	3-4 lbs	3-4 lbs

- Apply Zinc Sulfate at 1-3lb per tree for the 1st 3-4 yrs
- 2-3 sprays foliar Zn if deficiency symptoms show
- Mouse Ear Trees:
 - Apply Ni at rate of 1.5 qts/100 gallons

If You Fertigate

Amount of N/acre

Year	April	May	June
1	0	0	5 lbs N
2-4	5 lbs	5 lbs	5 lbs

- Apply granular P,K, Zn over the tree row in March or April of years 1 and 2
 - 40 lbs P
 - 40 lbs K
 - 25 lbs Zn Sulfate

Nitrogen

- Initial spring N used by developing foliage comes from storage pools within the tree.
- N demand will be greatest for "on" trees bearing a heavy crop load, since expanding leaves, shoots, and fruit create the greatest demand.

What's the Best Way to Fertilize Mature Pecans with Nitrogen?

- Apply 75-125 lbs N
- Inject liquid N
 - 3 applications beginning in April (10 day intervals)
 - 1 application in June
 - 1 application in late August/early September if heavy crop
 - No more than 25 lbs N/acre/injection
- Direct broadcast applications toward herbicide strip
 - Base total acreage applied on width of spread, *not on total size of orchard*
 - Use rate of 75-125 lbs/acre <u>on treated area only</u>
- Eliminate late season applications of N with:
 - Poultry Litter Application in Feb/March or
 - Establishment of good clover stand for 3 yrs

Sandy Soils: Increase rates by 25% and use multiple applications

Dry-Land /Neglected Orchards: Split March/June

Phosphorus (P)

- Phosphorus is rarely deficient
 - P movement in the soil is extremely slow
 - Young trees with small root system frequently respond to P
 - Drought stress can induce P deficiency on mature trees
 - Excess P can reduce Zn availability and some other minor elements.

Leaf symptoms

	Trees with any	
	necrotic leaf	
	symptoms	Tree necrosis
Element	29 Aug. 2009	rating
applied	(%)	4 Oct. 2010
None	66	3.7a
Р	33	1.5b
Κ	100	3.3a
P + K	17	1.3b

Rating 3

Rating 5

Symptoms appear closely linked to P shortage, even in July.

Mike Smith, Oklahoma State University

Phosphorus removal during harvest

1000 LBS/ACRE YIELD

– 540 lb kernels – 1.5 lb P

- 460 lb shell - 0.1 lb P

Total P removed = 1.6 lb/acre

How Often Should You Soil Apply Phosphorous

	Desired Range (lbs/A)	Mean (lbs/A)	% Low	% High	Sample Range (lbs/A)
Soil P	30-60	98.3	0	90	48-183

- P relatively immobile and accumulates on soil surface in non-tilled soils
- 1000 lb/acre pecan crop removes 1.6 lbs P per acre
- Annual turnover
- Yield response to broadcast application of P on mature pecan is extremely rare (Alben and Hammar, 1939; Worley and Harmon, 1964; Sullivan, 1974; Worley, 1974; Sparks 1988; Smith 1991;)
- Rates of >13,000 lbs P/acre only slightly increased nut size
- No benefit to annual maintenance broadcast application of P to pecans in most managed orchards
- Savings: \$20.40/acre
- If soil P<30 lbs per acre, broadcast P
- If soil P>30 lbs/acre and leaf P<0.12, band P

Potassium (K)

- Potassium is a common deficiency
 - Pecans inefficiently absorb K
- Deficiencies
 - More common in sandy soils
 - Faster correction in sandy soils
 - Clays bind K so that K is very slowly available
- Low potassium causes
 - Symptoms more pronounced with large crops
 - Poor shoot growth
 - Irregular shuck opening
 - Poor nut quality with a low kernel oil content.
- K, Mg, Ca are competitively absorbed — an excess of one can induce a deficiency of another

Potassium (K)

- K is transported to nuts at leaf's expense
- 50-100 lbs K applied in February/March
- 1.25-2.5 ppm in leaf analysis
- Manage N/K ratio to 2:1
- Manage Mg---(No Dolomitic lime above .45% Mg)
- Deficiency most common on Desirable and Schley

Potassium removal during harvest

1000 LBS/ACRE YIELD

– 540 lb kernels - 2 lb K

– 460 lb shell – 0.3 lb K

• Total K removed = 2.3 lb/acre

How Often Should You Soil Apply Potassium?

Soil K 100-150	153	23	34	94-361
----------------	-----	----	----	--------

- 1000 lb/acre pecan crop removes 2.3 lbs K per acre
- Annual turnover
 - 70% of total nutrient content of fruit returned to soil in shucks (Sparks, 1975)
- Yield response to broadcast application of K on mature orchards is extremely rare (Hunter and Hammar, 1947; Hunter and Hammar, 1948; Sharpe et al. 1950; Sharpe et al., 1952; Hunter, 1956; Gammon and Sharpe, 1959; Hunter and Hammar, 1961; Worley, 1974; Worley, 1994)
- No real benefit to maintenance broadcast application of K in most mature managed orchards
- Savings: \$23.40/acre
- If soil K drops below 100 lbs/acre: broadcast K
- If soil K is >100 lbs/acre and leaf K is less than 1.1: <u>band K</u>
 - Need to keep leaf K at 2:1-2.5 ratio with leaf N, but broadcast application will not increase leaf K to 1.25

Zinc

45. Interveinal chlorosis and undulating margins of pecan leaflets with mild zinc deficiency. (Courtesy R. D. O'Barr)

- Necessary for shoot elongation, leaf expansion, and yield
- Formulated Zinc
 Sprays or 2 lbs Zinc
 sulfate + 4 lbs Urea
- Begin 2 wks after budbreak until shoot elongation complete

How Often Should You <u>SOIL</u>-apply Zinc?

Soil Zn 15-20	25	28	55	3.9-55.3
---------------	----	----	----	----------

- Most Coastal Plain soils not planted to pecan are very low in Zn
- Most mature orchards have high soil Zn levels
- Zn is immobile in soil
- Broadcast Zinc Sulfate when soil Zn is <15 lbs/acre
- If soil Zn >15 lbs/acre and leaf Zn<50 ppm or visible rosette: band Zn
- Savings: \$25/acre
- Make annual foliar Zn applications

Mouse Ear

- Nickel Deficiency
- Zinc Management

- Apply 1 pt/A in spring (April) while canopy is developing (parachute stage);
- 2nd application: 1 pt/A 30-60 days after 1st appl.
- Third application of 1.5-2 pts/A in late Sept.-early October before leaf fall to prevent mouse ear in the spring flush.

- Foliar B application improves fruit retention and percent kernel in the absence of noticeable B deficiency
- Poor mobility of B to flowers
- 3 sprays beginning with 2nd spray
- Timing of applications should be during the prepollination stage

Iron (Fe)

- Fe deficiencies are common in spring
- Cool, wet conditions increase Fe shortages – interferes with transport in the plant

- High concentrations of P, Mn, Cu, Ni or Zn can induce an Fe shortage.
- Can be corrected with foliar applications of FeSO₄ or Fe chelates.

2010 Nitrogen Availability

---- Clover ---- Amm Nitrate ----- UT

If you maintain clover in row middles, apply N to herbicide strips

Summary

- Crimson clover contributes about 30 lbs additional N per acre early in the establishment phase; this number increases with time
- Clover also enhances organic matter and biological activity of soil
- Clover competes for water during dormant season and at budbreak but helps maintain soil moisture in summer
- Clover can provide adequate late season N, but <u>fertilizer application is necessary in spring where</u> <u>clover is used</u>

Chicken Litter

- Have sample analyzed
 - Typically:N60 lbs/AP60 lbs/AK40 lbs/ACa30 lbs/AZn0.6 lbs/ACu0.6 lbs/A

Nutrients are organically bound

- 60% (36 lbs N/ton) is available for crop uptake during the season.
- Excellent for building up weak land

Chicken Litter

• 1 ton/A of poultry litter -- February

DO NOT APPLY AFTER MAY!!!

Within the first 3 years of using poultry litter, apply additional N in spring (50-75 lbs/acre

Questions?