Economic and Environmental Benefits of Compact Bed Geometry for Plasticulture Sanjay Shukla, Nathan Holt, Kira Hansen

UF-IFAS SWFREC. Department of Agricultural and Biological Engineering. 2685 Florida 29, Immokalee, FL 34142.

Southwest Florida Research & Education Center

The Idea

Compact

Motivation Can *compact beds* make plasticulture more efficient?

Input

- ➤ Water
- Nutrients
- > Cost
- Fumigant

Output ≻ Yield

S2: 2013-2014

Water and Nutrients

- Same rates
- One drip tape
- Preplant + liquid fertilizer

Experimental Area

Commercial Farm

 \geq ≈ 2 acres, 36 beds

Statistical Setup

> Incomplete randomized block design (C)

T1-6: Treatment 1 – Replication 6

Copyright: Shukla and Holt

Monitoring

Hydrologic

Water Table

Data Collection and Storage

Real-time data (15 min.) throughout seasons

Climate

 Rainfall, wind speed, solar radiation, temperature, and humidity

Weather Station

Data Collection

In-Field Data Logger

Monitoring

Plant

Growth

- Leaf-Area-Index (Bi-weekly)
- Plant Height

Leaf Tissue

N, P, and K (Bi-weekly)

Yield

Three harvests (USDA grade)

Yield Copyright: Shukla and Holt

Soil

Solution

- \blacktriangleright NH₄-N and NO_x-N (Bi-weekly)
- In and below root zone

Bed Firmness

Bulk Density

Soil Solution

Tissue

- Differences in yield not significant with improved bed firmness
- Treatments were not water or nutrient limited
- No measured differences in growth (LAI and Plant Height)

Economic Benefits

- 11. FBreadlingight
- 22. Dissesevious Area

Seeing the Benefit

- Immokalee Fine Sand
- 1 hour, 0.34 GPM/100 ft.

• Wetted Width: 11 in.

• Wetted Depth: 9.5 in.

Eggplant

Beds

24 in x 10 in 1 Tape 36 in x 6 in 2 Tapes 18 in x 12 in 1 Tape

51 Days After Transplant

24 in x 10 in

36 in x 6 in

5 in 18 in x 12 in

Reductions 50% Irrigation
14% Nitrogen
11% Phosphorus 73 Days After Transplant

Soil Moisture

Eggplant Results

Production Cost	36 in x 6 in	24 in x 10 in	18 in x 12 in
Drip Tape (\$/acre)	\$255	\$128	\$128
Fuel Cost (\$/acre)	\$27	\$14	\$14
Cost of Fumigant (\$/acre)	\$260	\$174	\$129
Net Production Cost Savings (\$/acre)	-	\$227	\$273

*Conservative (Additional Potential Savings: Liquid Fertilizer, Labor, Lease)

What We Know

System

Efficiency

More Crop per "Drop"

Economic

->Environment

What We Are Doing Now

Single-Row Crop: Tomato

Double-Row Crop: Pepper

Hydrological Impact Study

> Other Crops: Melons, Squash, Herbs

> Applicability Across United States?, Implemented in FL, GA, and SC

Extend out flat piece

New Bedder

Improvements

New Plastic Machine

Then Improvements

Now

Tomato Season 1

What We Are Looking For

Drip Fumigation

Hydrology (Current and Future)

Disease

Tomato Experiment

Pepper Experiment

- 2015, 2016

Fall

> Transplant:

- October 2, 2015

Standard Tie vs. Loose Tie

Pepper Yield Preliminary Results

First Harvest

- November 30, 2015
- Grades and Weight
- No Statistical Differences Between Bed Geometries

- More suited than tomato? vine vs staked
- Narrower than 16 in?
- Reduced cost, water, nutrient, and disease risk
- More plants/ac, reduced leasing cost

Acknowledgements

C&B Farms

Pacific Tomato Growers

UF/IFAS Dean's Office Best Graduate Research

