- nematicide. Talk with representatives from DuPont to learn how VYDATE CLV (17.0 fl oz/A) may be used in conjunction with seed-treatment nematicides for additional management of nematodes and thrips. - e. For management of plant-parasitic nematodes, rotate fields with non-host crops. - f. Where southern root-knot nematodes are a problem, consider planting root-knot nematode varieties mentioned earlier; also consider using a seed-treatment nematicide in conjunction with these varieties to further improve control of nematodes. ### Diseases and Nematodes in Cotton: A primer for growers The importance of diseases and nematodes in cotton production is easy to overlook since the cotton plant is less severely affected by disease than are other crops and symptoms caused by nematodes can be easily misdiagnosed. Many growers may not recognize the price that they are currently paying to fight disease. For example, the cost of basic fungicide seed treatments is included with the price of their seed, and growers may plant at an increased seeding rate, in part to off set potential losses from a poor stand due to seedling disease. A grower can effectively reduce the impact of diseases and nematodes on his crop by making sound management decisions. These include the use of crop rotation, choice of planting date, fertility and plant growth management, and choice of cotton variety. Although difficult for some growers, good crop rotation with crops that are non-host for major cotton pathogens remains one of the most effective means of reducing losses in cotton. #### **Seedling Diseases** Seedling diseases are widespread but typically not a major problem in Georgia cotton in most years. However, economic loss to seedling diseases can be significant at specific locations, especially when weather conditions are cool and wet at planting time and the grower is not able practice good crop rotation. Seedling diseases are caused by fungi that either survive on the seed or that live in the soil and infect seeds or developing seedlings. By far, the most common cause of seedling disease in Georgia is the fungus *Rhizoctonia solani*; however *Pythium* spp. and *Fusarium* spp. May also damage young plants. Generally as the young plant matures it becomes less susceptible to infection by these pathogens. Seedling diseases are differentiated by the stage of development of the seed and young plant when symptoms occur. - 1. **Seed rot** is the first disease in this sequence and is easily identified by the presence of decayed seed; however the problem is often detected only after the grower notices "skips" in the stand. Seed rot may be caused a number of different fungi that can exist either in the soil or on the seed itself. - 2. The second disease in this sequence is **pre-emergence damping-off** where a fungal pathogen attacks the young seedling after germination but before it cracks the soil surface. Like seed rot, pre-emergence damping-off results in skips in the stand. - 3. **Post-emergence damping-off** occurs once the seedling has emerged from the soil. It isidentified by the presence of a brown lesion at, or just below, the soil line that will eventually expand and girdle the young, succulent stem. Once the stem is completely girdled, the young plant will quickly wither and die. In the case of "hill-dropped" cotton, it is a common that if one seedling in a hill is diseased, all of the seedlings will be affected. Post-emergence damping-off is often referred to as "soreshin" in Georgia and is caused by the fungus *Rhizoctonia solani*. It is perhaps the most common seedling disease of cotton in the state and the one with which growers are most familiar. Although seedling disease caused by *Pythium* spp. is less common, it still occurs and is characterized primarily by a water-soaked root rot, either before or after emergence. As will be discussed later, it is important to identify the pathogen(s) that is/are responsible for seedling disease in a field as *Rhizoctonia solani* and *Pythium* spp. may not be controlled by a single fungicide ### **Management of Seedling Diseases** Control of seedling diseases of cotton begins with the use of a fungicide seed treatment. All commercial seed sold in Georgia is pre-treated with at least two fungicides. Growers should never plant cotton seed that has not been treated with a fungicide. Some seed treatments, such as thiram and captan, are protectant fungicides that protect the seed from fungi borne on the seed or in the soil associated with the seed. Other treatments such as Vitavax (carboxin), baytan, metalaxyl (Allegiance), and mefenoxam (Ridomil Gold) have systemic activity and when absorbed in the seedling, offer some protection immediately following germination. Growers can greatly minimize the effect of seedling diseases by avoiding conditions in which seeds/seedlings are at risk to damage from fungal pathogens. Cool, wet weather at planting and low soil temperatures produce an environment that not only slows germination and emergence, but may also favor fungal growth and infection. *Pythium* can be especially troublesome in saturated soils; Rhizoctonia solani is less dependent on soil moisture or temperature. NOTE: Growers should avoid planting cotton seed when rain and colder soil temperatures are likely, even if seedling disease is not an issue. Rapid germination and vigorous growth by the seedling are factors which help to insure the survival of the young plants. Slower growth early in the season gives the fungal pathogens more time to infect the vulnerable seed and seedling. The sooner the seedling develops hard, "woody" tissue, the less likely it is to be penetrated and rotted by fungi. ## Good management practices to reduce the chance of disease include the following: - 1. Plant in warm soils where the temperature at a 4-inch depth is above 65° F and where the 5-day forecast doesn't call for cooler or cooler/wetter weather. **NOTE:** Cotton growers should **NOT** plant cotton if at all possible when conditions are cool and wet or if the forecast calls for such conditions soon after planting, even if they plan to use additional fungicide treatments! - 2. Plant seed on a raised bed since soil temperatures in the bed are generally slightly warmer than surrounding soil and drainage is likely to be better. Cotton planted in conservation tillage is not grown on raised beds, thus potentially increasing the threat from seedling disease. - 3. Avoid planting seed too deeply. Seed that is planted too deeply results in longer periods before the young seedling cracks the soil surface, increasing the likelihood of seedling disease. - 4. Correct soil pH with lime (pathogenic fungi are more tolerant to acidic soils than are cotton seedlings; pH should be in the range of 6.0 to 6.5). - 5. Fertilize according to a soil test so as to promote rapid seedling growth; however care should be taken to avoid "burning" the seedling with excessive rates of at-plant fertilizers. - 6. Avoid chemical injury through the use of excessive amounts or improper application of insecticides, fungicides, or pre-plant herbicides. - 7. Plant only high quality seed as indicated by the percent germination in the standard seed and cool germination tests. Preferably, cool germination test results should be above 70%, though 60-69% is still adequate. Additional seed treatment fungicides such as Dynasty CST, Trilex advanced, and Accelron, beyond the "base" treatment can significantly reduce the amount of seedling disease, increase stands, and potentially improve final yields where conditions are favorable for disease development. However, significant outbreaks of seedling diseases are a sporadic problem. Because we cannot reliably predict which years will have greater amounts of seedling disease, growers can become justifiably frustrated when trying to determine the economic benefit of the additional fungicide. As significant yield losses to seedling disease are sporadic in Georgia, the Cooperative Extension does not recommend an additional fungicide treatment for each and every cotton field. Numerous field trials have been conducted by researchers at The University of Georgia assessing the benefits of seed treatments, hopper box treatments, and in-furrow fungicides. It has been very difficult to document significant yield benefits from these products despite increases in stand that may occur. # When a grower is assessing the need for additional protection from seedling diseases, he should note the following. - 1. Any field with a history of cotton seedling diseases should be considered a prime candidate for the use of these additional fungicides and seed treatments. - 2. This is especially true when a poor history is combined with any combination of the following: a. cool, wet weather at planting, b. poor seed quality, c. conservation tillage (which tends to keep the soil cooler and perhaps moister than conventional tillage), d. a low seeding rate, or e. the use of an in-furrow insecticide or nematicide. The risk for losses to seedling disease increases in fields where multiple factors, as described above, apply. **Final note on seedling diseases:** It is important to understand that fungicides which are effective on *Rhizoctonia solani* may not be effective on *Pythium* spp., and vice versa. For example, PCNB is active against *Rhizoctonia* but not *Pythium*. Metalaxyl, mefenoxam, and etridiazole are active on *Pythium* spp. but not *Rhizoctonia*. The tables below includes detailed information on chemical treatments for seedling diseases. ### **Fusarium Wilt** Fusarium wilt is a fungal disease that typically becomes evident in mid-season, though it can occur at any point in the growing season. In 2013 and 2014, severe outbreaks of Fusarium wilt were observed in Pierce, Tift, Jeff Davis, Evans, Cook, Grady, Thomas and Berrien Counties. Fusarium wilt is not currently a wide-spread problem in Georgia; however there are fields throughout the state where losses can be significant. For some reason, Fusarium wilt seems to be more problematic in southeastern Georgia than in other acreas of the state. Fusarium wilt is becoming of increasing concern. In cotton, Fusarium wilt is usually found in association with infections by the southern root-knot nematode, which has a synergistic effect on this disease. Although root-knot nematodes are most often associated with Fusarium wilt, other parasitic nematodes such as Columbia lance, reniform, and sting nematodes also injure cotton roots and increase the severity of the disease. As populations of parasitic nematodes increase throughout the state from inadequate crop rotation, it is possible that Fusarium wilt will become a more serious problem. **Recommended control measures for this disease are to plant nematode-resistant cotton varieties and to control root-knot and other nematode infestations.** The most visible symptom of Fusarium wilt is the presence of wilted and dying cotton plants in a field. Some plants may be stunted and the leaves may yellow between the veins (also know as interveinal chlorosis). Root-knot nematodes alone can cause wilting, but the synergistic effect with the Fusarium fungus is usually required to kill plants, unless the soil is extremely dry for prolonged periods. Fusarium-infected plants wilt even if soil moisture is adequate because of damage to the vascular system that carries water throughout the plant. A preliminary diagnosis of Fusarium wilt can be made fairly easily in the field by slicing through the plant stem at a shallow angle to expose the vascular tissue. Fusarium wilt will cause a noticeable browning of the vascular tissue. This discoloration is the result of damage to the vascular tissue which prevents adequate flow of water and nutrients. If you **carefully dig** up the root system of wilting plants, you will also usually see significant galling caused by root-knot nematodes. To verify the diagnosis, submit a sample through your county agent to the UGA Plant Disease Clinic. You should also submit a soil sample for nematode assay to the UGA Extension Nematology Laboratory. Plants affected by Fusarium wilt tend to be clustered in the field rather than randomly spaced. In fact, areas of the field where Fusarium wilt occurs will probably be consistent from year to year. This is because the fungal pathogen and the associated parasitic nematodes tend to be unevenly distributed in the field. Additional information on Fusarium wilt in cotton can be found in University of Georgia Extension Bulletin 1143, "Cotton Diseases and Their Control." and "Cotton Nematodes and Fusarium Wilt", Leaflet L 82, 1996. ### **Nematodes** An estimated 60 to 70 percent of Georgia's cotton fields are infested with at least one species of potentially damaging nematodes. In a recent statewide survey of cotton fields (nearly 1800 samples were submitted by agents from randomly selected fields in 2002) approximately 69 percent of the fields were infested with root-knot nematodes, 2.8 percent with Columbia lance nematodes, 4.6 percent with reniform nematodes, and 0.6 percent with sting nematodes. While the southern root-knot nematode is responsible for the greatest amount of damage to cotton in the state, the Columbia lance and reniform nematodes also cause tremendous damage in more restricted areas, e.g. in the heavier soils along our the fall-line between the Piedmont and the Coastal Plain. Every cotton grower in the state of Georgia either has a problem with nematodes now or is at risk for such a problem should they lose the ability to practice effective crop rotation. If damage to cotton from parasitic nematodes is such an important problem in Georgia, one may question why more attention is not devoted to this pest. There are three basic reasons. First, many growers do not recognize the symptoms of nematode damage as they can appear similar to drought stress, poor soil fertility, and injury from herbicides. Second, nematodes are microscopic worms that are not easily viewed by the growers. Third, many growers feel that they cannot afford to treat with nematicides because of the perceived cost associated with such treatments. Nothing could be further from the truth. ### Symptoms of Nematode Damage Symptoms of damage from nematodes in a field are variable and are dependent on the species of