
Extension Beef Cattle Specialist UF-IFAS Dept. of Animal Sciences

What influences profit for the beef enterprise?

- 1. Weaning weight of calves
- 2. Percent of cows weaning a calf
- 3. Annual cost of maintaining the cow
- 4. The price received for the calves

REPRODCUTION and NUTRITION

Nutrient Priorities in Cattle

1. Maintenance

- 2. Growth
- 3. Lactation
- 4. Reproduction

What are the nutrient requirements?

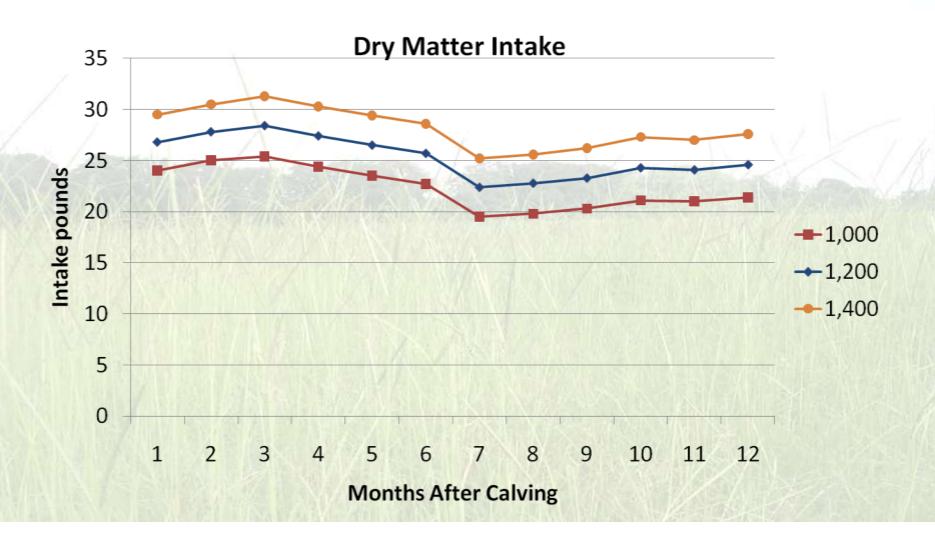
- Weight
 - Maintenance reqs↑ as BW↑
- Stage of production
 - Pregnant ? (↑ reqs)
 - Lactating ? (↑ reqs)
 - Growing ? (↑ reqs)

Stuff to Be Concerned About

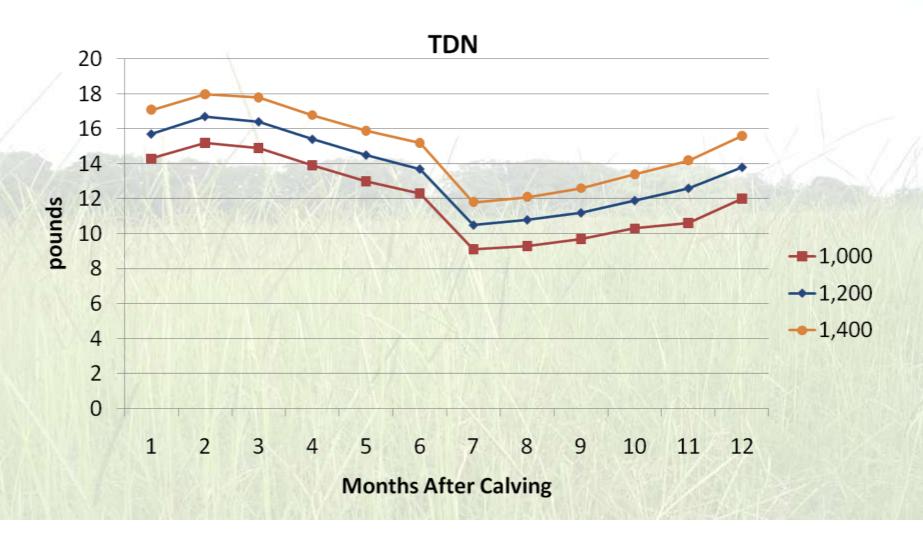
1. Intake

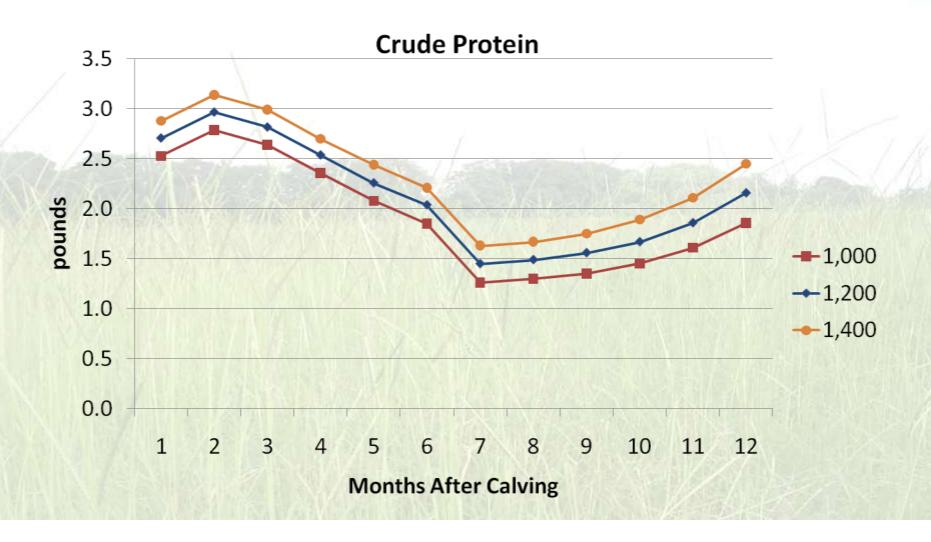
cows need enough to eat (start at 2% of BW)

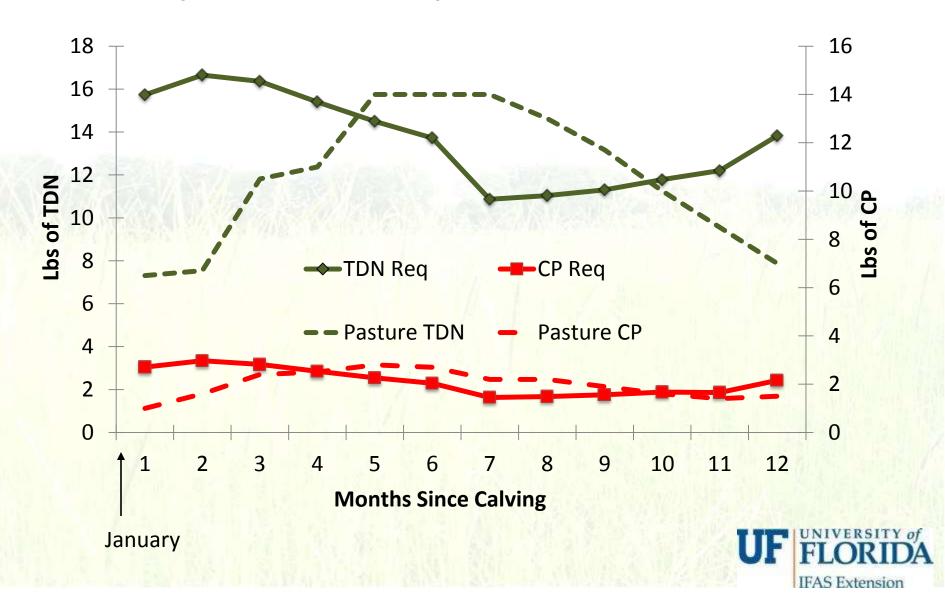
2. Energy

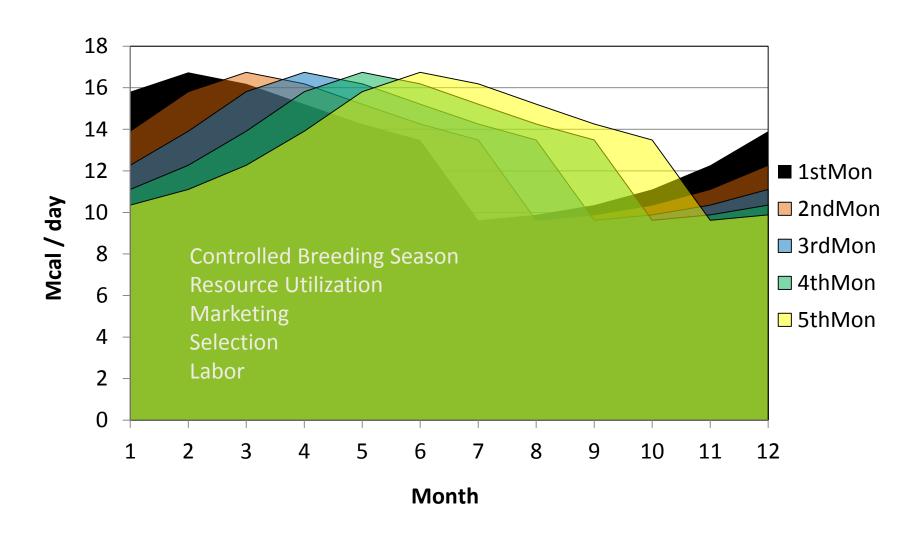

- Most commercial supplements don't tell you this, but it's important
- TDN is easily measured in forages, determine the cow's requirement met by forage and supplement needs (50-60% of total diet)

3. Protein


- Most commercial supplements sold advertising CP
- CP is easily measured in forages, determine the cow's requirement met by forage and supplement needs (8-12% of total diet)
- 4. Mineral supply (esp. crucial times)


Effect of Cow BW on Feed Intake


Effect of Cow BW on Energy Intake


Effect of Cow BW on Protein Intake

Requirement Cycles in Beef Cows

Predicted energy requirement of cows with different calving dates

7-Month Cow Nutrient Requirements

			Months After Calving					
1,200	(20 lbs peak milk)	1	2	3	4	5	6	7
	DMI, lb/d	26.8	27.8	28.4	27.4	26.5	25.7	24.2
	TDN, %	58.7	59.9	57.6	56.2	54.7	53.4	44.9
	NEm, mcal/lb	0.59	0.61	0.57	0.55	0.53	0.51	0.37
	CP, %	10.10	10.69	9.92	9.25	8.54	7.92	5.99
	Ca, %	0.29	0.31	0.29	0.26	0.24	0.22	0.15
	P, %	0.19	0.21	0.19	0.18	0.17	0.15	0.12
	TDN, lb/d	15.73	16.65	16.36	15.40	14.50	13.72	10.87
	NEm, mcal/d	15.81	16.96	16.19	15.07	14.05	13.11	8.95
	CP, lb/d	2.71	2.97	2.82	2.53	2.26	2.04	1.45
	Ca, Ib/d	0.08	0.09	0.08	0.07	0.06	0.06	0.04
	P, Ib/d	0.05	0.06	0.05	0.05	0.05	0.04	0.03

Bovine Fetal Growth Time Line

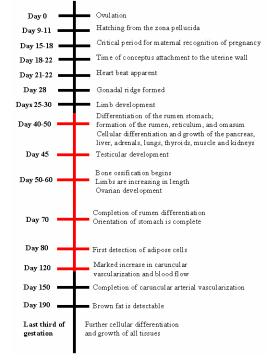
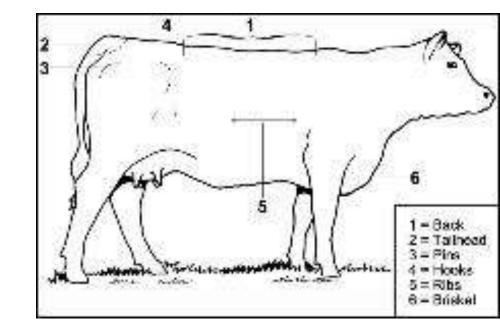


Figure 1. Timeline of bovine fetal development. The portion in red is the time point of feed restriction in the current study.

Think about how your production calendar fits this time line.

What nutritional insults do your cows experience?

What developmental functions are you compromising?


What does it cost you?

What Happens When Nutrition Compromised?

- Decreased calf birth weight
- Calving difficulty
- Suppressed calf/cow immune status
- Poorer colostrum
- Decreased growth rate
- Reduced pregnancy rate
- Lower weaning weights

How to tell if cattle are getting adequate nutrition

- Body Condition Score
- Estimation of body fat
- Gauge effectiveness of feeding program
- Decision tool to determine future feeding needs
- Scale of 1 to 9

http://edis.ifas.ufl.edu/AN001 http://edis.ifas.ufl.edu/AN004

Isn't All Hay the Same?

Do You Know What These Are?

Effect of grass maturity on forage quality

	TDN, % DM			Inta	Intake, % BW			
Week	4	6	8	4	6	8		
Bahia	56	55	54	2.3	2.1	1.7		
Bermuda	57	52	44	2.3	2.2	1.8		
Star	60	53	49	2.4	2.5	2.1		
Digit	60	58	57	2.5	2.7	2.2		
Limpo	63	63	56	2.5	2.3	2.2		

Adapted from Brown and Kalmbacher, 1998

Quality of Bermudagrass Harvested at Different Maturity and Season

Itom	Wks of	Harvest date					
Item	regrowth	06/14	07/12	08/09	09/06	10/04	
	4	55	57	52	53	46	
TDN, %	6	52	51	47	49	48	
	8	52	51	46	47	44	
	4	0.57	0.78	0.72	0.63	0.28	
ADG, Ib	6	0.34	0.48	-0.04	0.42	0.22	
	8	0.16	0.07	-0.39	0.07	-0.39	

Nutrients supplied by hay at different qualities in relation to cow requirements and how much would she have to eat to meet requirements and is it feasible?

3 month	after	calving	TDN	СР	DMI		
		Cow Req	16.4	2.82	28.4	2.4% BW	
Feed			Lbs Feed to	o Meet Req		Feasible?	
TDN	СР		TDN	CP		TDN	СР
60%	15%		27.3	18.8		Yes	Yes
58%	14%		28.3	20.1		Yes	Yes
56%	13%		29.3	21.7		Yes	Yes
54%	12%		30.4	23.5		Yes	Yes
52%	11%		31.5	25.6		No	Yes
50%	10%		32.8	28.2		No	Yes
48%	9%		34.2	31.3		No	No
46%	8%		35.7	35.3		No	No
44%	7%		37.3	40.3		No	No
42%	6%		39.0	47.0		No	No
40%	5%		41.0	56.4		No	No
38%	4%		43.2	70.5		No	No
36%	3%		45.6	94.0		No	No

Feeding different hay qualities

Hay	DM, %	TDN, %	CP, %
1	93	50	5
2	92	54	7
3	92	57	10

Hay quality and cow nutrition

		1 Month Before Calving		1 Month After Calving		3 Month After Calving	
1200 lb	DMI, lbs	25		27		28	
Cow Require	TDN, lbs	13.8		15.7		16.4	
	CP, lbs	2.2		2.7		2.8	
Amount	supplied by	hay, lbs	Balance	CANON	Balance	A COMPANY	Balance
Hay1	TDN	12.5	-1.3	13.5	-2.2	14.0	-2.4
	СР	2.0	-0.2	2.2	-0.5	2.1	-0.6
Hay2	TDN	13.5	-0.3	14.6	-1.1	15.1	-1.3
	СР	1.75	-0.45	1.9	-0.6	2.0	-0.8
Hay3	TDN	14.3	+0.5	15.4	-0.3	16.0	-0.4
	СР	2.5	+0.3	2.7	0.0	2.8	0.0

Hay1=50/5; Hay2=54/7; Hay3=57/10

In a 5.5 ft diameter round bale

33.1% of the bale is in the outer 6"-

26.4% of the bale is in the next 6" -

19.9% of the bale is in the next 6" -

13.2% of the bale is in the next 6"

7.4% of the bale is in the inner 6"

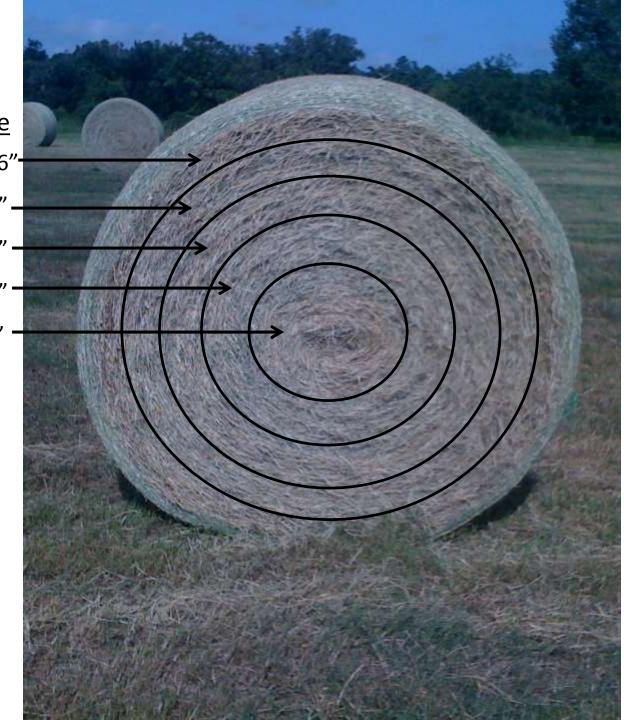


Table 1. Effect of bale size on bale weight and value of large round bales¹

Bale		Bale			Bale value in	\$/Ton if
width,	Bale	volume,	Est. bale	Bale size, %	relation to	bale cost
ft	dia, ft	ft ³	weight, lb ²	of a 5x5 bale	5x5 bale ³	\$50 ⁴
4	4	50	512	51	\$25.60	\$195.22
4	5	79	800	80	\$40.00	\$124.94
4	6	113	1153	115	\$57.60	\$86.76
5	5	98	1000	100	\$50.00	\$100.00
5	6	141	1441	144	\$72.00	\$69.41

¹ Reproduced from J. Banta, TAMU Extension document E-319.

 $^{^2}$ Assumes all bales are the same density as a 5'x5' bale that weighs 1,000 lb (10.17 lb/ft³).

³ Assumes all factors are equal except bale size and weight.

⁴ Price per ton assuming all bales, regardless of size and weight, cost \$50.

Supplement Choice

What Drives It

- Price
- Crude protein value
- Convenience
- Habit

What Should Drive It

- Needed nutrients
- Practicality
- Price per unit
- Convenience

What is the worst thing that could happen? Combine poor forage with poor supplement!!

Table 1. Alternative Forage Sources

Percent of Dry Matter DMCP. TDN CF Ca <u>Ash</u> 7.2 Corn Stalks 85.0 0.50 6.6 50.0 34.0 0.10 92.0 38.0 0.60 10.0 Cotton Gin Trash 6.0 44.0 0.20Cottonseed Hulls 91.0 4.1 45.0 48.0 0.10 0.07 2.8 Milo Stalks 85.0 5.6 54.0 33.0 0.400.1010.0 91.0 33.0 1.20 0.15 8.6 10.8 48.0 Peanut Hay Peanut Hulls 91.0 8.5 22.0 63.0 0.200.07 4.0 Soybean Stubble 0.06 88.0 5.0 40.0 44.3 1.00 6.492.0 42.0 0.04 10.0 Wheat Straw 4.1 40.0 0.17

Supplement Decision Making

- Energy is limiting nutrient if:
 - Cows are thin
 - Forage availability is limited
- Solving Energy limitation:
 - Forage availability is problem then substitution with harvested forage
 - Forage availability is adequate (selection) then supplement with high energy/low protein
- Supplement selection based on \$/Ib of TDN or NE_g
- Supply sufficient supplement to meet crude protein deficiencies

- Protein is limiting nutrient if:
 - Energy is satisfactory
 - Cows in adequate BCS for energy mobilization
 - Forage availability is not limited
- Solving Protein limitation:
 - Forage availability is adequate then supplement with high crude protein
 - Plant protein supply RDP, improve forage utilization
 - NPN in molasses 50% utilization
 - RUP source improve animal performance after RDP is met
- Supplement selection based on \$/lb of CP
- Supply sufficient supplement to meet CP deficiencies and menitors energy status

Commodity feedstuff options

Feed	TDN,%	Feed	Crude Protein, %
Whole Cottonseed	95	Urea	281
Hominy	91	Cottonseed Meal	49
Corn	88	Soybean Meal	49
Dried Distillers Grains	90	Dried Distillers Grains	30
Soybean Meal	87	Wet Brewers Grains	24
Wheat Middlings	83	Corn Gluten Feed	24
Citrus Pulp	82	Whole Cottonseed	23
Corn Gluten Feed	80	Wheat Middlings	18
Cottonseed Meal	75	Peanut Skins	17
Soybean Hulls	72	Soybean Hulls	12
Molasses	70	Hominy	12
Wet Brewers Grains	70	Corn	9
Peanut Skins	65	Citrus Pulp	9
Hay	40-50	Hay	10-4
Peanut Hulls	22	Peanut Hulls	8
Urea	0	Molasses	5

Calculations

\$/CWT feed = \$ per ton / 20\$10.00=\$200/20

- \$/CWT feed DM = \$/cwt / (%DM/100)
 \$9.20=\$10.00/(92%/100)
- \$/CWT Nutrient (TDN or CP) = \$/cwt / (%Nutrient /100)
 \$13.14=\$9.20/(70%/100)

Feedstuff options

Feed	\$ / Ton	% DM	% TDN	% CP	\$ / CWT (as fed)	s \$ /CWT (dm)	\$/CWT TDN (as fed)	\$/CWT CP (as fed)	\$/CWT TDN (dm)	N \$/CWT CP (dm)
Blackstrap Molasses	170	74	72	5	8.50	11.49	11.81	170.00	15.95	229.73
Corn	322	88	88	9	16.10	18.30	18.30	178.89	20.79	203.28
Citrus Pulp	335	91	82	9	16.75	18.41	20.43	186.11	22.45	204.52
Hay [†]	100	92	54	10	5.00	5.43	9.26	50.00	10.06	54.35
Soybean Hull, pellet	225	91	70	12	11.25	12.36	16.07	93.75	17.66	103.02
Soybean Hulls, loose	215	91	72	12	10.75	11.81	14.93	89.58	16.41	98.44
SBH/CGF 50/50	263	91	75	15	13.15	14.45	17.53	87.67	19.27	96.34
Corn Gluten Feed	298	91	80	24	14.90	16.37	18.63	62.08	20.47	68.22
Whole Cottonseed	260	92	95	24	13.00	14.13	13.68	54.17	14.87	58.88
Dried Distillers Grains	342	91	88	30	17.10	18.79	19.43	57.00	21.35	62.64
Cottonseed Meal	275	92	75	49	13.75	14.95	18.33	28.06	19.93	30.50
Peanut Hull Pellet	135	91	22	7	6.75	7.42	30.68	96.43	33.72	105.97

^{†\$40/800} lb roll

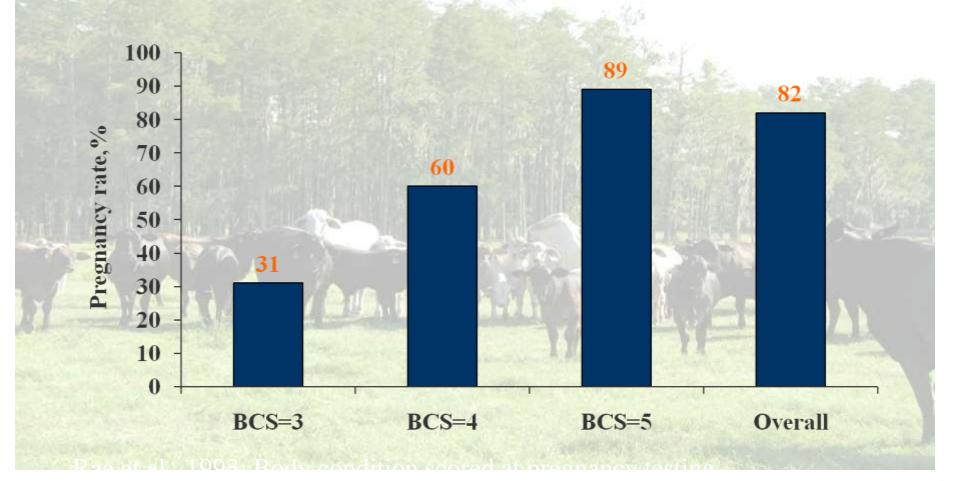
How to tell if cattle are getting adequate nutrition

- Body Condition Score
- Estimation of body fat
- Gauge effectiveness of feeding program
- Decision tool to determine future feeding needs
- Scale of 1 to 9

3

1 = θack
2 = Tailread
3 = Pire
4 = Hecke
5 = Ribs
6 = Briskel

http://edis.ifas.ufl.edu/AN001 http://edis.ifas.ufl.edu/AN004


Importance of BCS in Cows of Different Age

Relationship of Parity and BCS to Pregnancy Rate (%)

		Body con	dition scor	e
Parity	<u><</u> 3	4	<u>≥</u> 5	All
1	20	53	90	84
2	28	50	84	71
3	23	60	90	85
4-7	48	72	92	87
>8	37	67	89	74
			The second	
All	31	60	89	82

Relationship of Body Condition Score to Pregnancy Rate

The Final Equation:

Forage

+

= Body Condition Score

Supplement

Reproduction Success

Dollar Differences in BCS

	BCS 3	BCS 4	BCS 5
% Pregnant	\$59,516	\$63,768	\$68,019
Weaning %	\$22,854	\$46,806	\$52,375
205-d Weaning Wt	\$665.61	\$710.96	\$719.06
Weaning Wt, \$/cow	\$256	\$522	\$554

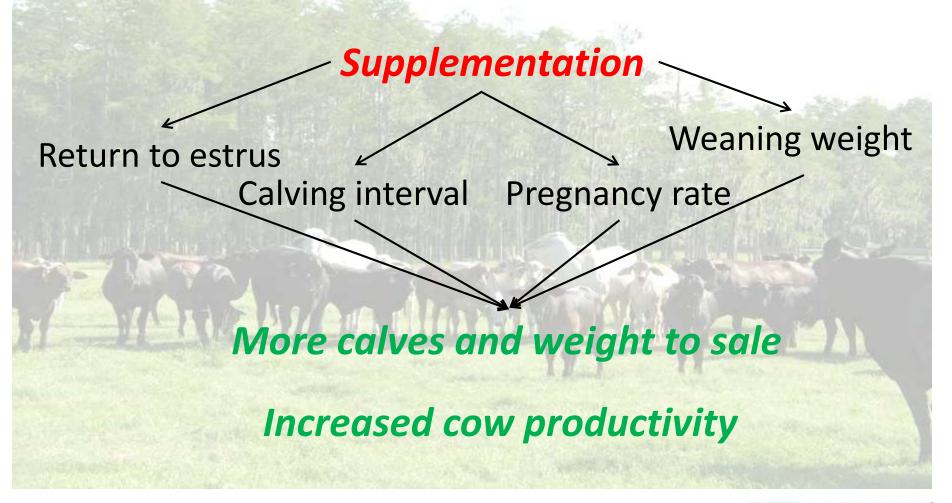
Assumptions: 100 hd herd,

all calves marketed, weaning wt= 525 lb, market price of \$162/cwt.

USDA-ERS 2014 Est. Cow-calf total operating costs = \$518.91

Dollar Differences in BCS

	BCS 3	BCS 4	BCS 5
% Pregnant	\$41, 913	\$44, 907	\$47, 907
Mooning %	\$16,095	\$32,962	\$36,884
Weaning %	φ10,095	φ32,90Z	φ30,00 4
205-d Weaning Wt	\$468.13	\$487.73	\$491.06
Weaning Wt lb/cow, \$/cow	\$175	\$380	\$398
	and the same	The same of	The falls


Assumptions: 100 hd herd,

all calves marketed, weaning wt= 525 lb,

market price of \$114.05/cwt.

USDA-ERS 2015 Est. Cow-calf total operating costs = \$397.95

Returns to Nutrition

Take Home Points

- Nutrients and Timing are Critical
 - Limiting performance
- Hay Quality Matters
 - Feed vs Fill
- Supplement Type, Quality, and Intake
 - Return on investment is there

Final Remarks

- Underfeeding the cow herd before or after calving really affects 2 calf crops, this year's and next year's.
- THE MOST IMPORTANT NUTRIENT IS THE ONE THAT IS MISSING!

If your truck looks like this.....

.... and your cows and pastures looks like this, your spending priorities are mis-placed.

Key points for condition scoring cows

$I \cap I \cap I$	IITIAN	ccoro
COLIC		score
		300.0

Reference Point	1	2	3	4	5	6	7	8	9
Physically weak	yes	no	no	no	no	no	no	no	no
Muscle atrophy ^a	yes	yes	slight	no	no	no	no	no	no
Outline of spine visible	promin ent	promin ent	promin ent	yes	slight	no	no	no	no
Outline of ribs visible	all	all	all	3 – 5	1-2	0	0	0	0
Fat in brisket and flanks	no	no	no	no	no	some	full	full	extre me
Outline of hip and pin bones visible	yes	yes	yes	yes	yes	yes	slight	no	no
Fat udder and fat around tail head	no	no	no	no	no	no	slight	yes	yes

^aMuscles of loin, rump and rear quarter are concave, indicating loss of muscle tissue.