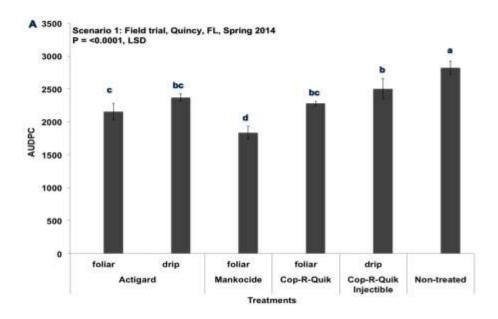
Angular leaf spot, powdery mildew, gummy stem blight, viruses, and downy mildew: Notes for 2018

Mathews Paret, Fanny Iriarte, Binoy Babu, Nicholas Dufault, Gary Vallad, Pam Roberts, Laura Ritchie, Susannah Wright, Drey Clark, Scott Atkins and Josh Freeman

Ph.D students: Eric Newberry, Mason Newark, Andy Shirley Post-doctoral fellow: Melanie Kalischuk (Drones and cucurbit diseases) Extension: Shep Eubanks, DJ Wiggins, Matt Lollar, Bob Hochmuth, Anthony Drew, Dan Fenneman Glades Crop Care: Steve Hoak, Myles Gibson and others



North Florida Research and Education Center, UF, Quincy, FL Department of Plant Pathology, UF, Gainesville, FL Gulf Coast Research and Education Center, UF, Balm, FL Southwest Florida Research and Education Center, UF, Immokalee, FL

Angular leaf spot affecting watermelon and other cucurbits (since 2010, reported 10-15% yield losses in watermelon, 10-50% in squash and cucumbers)

	Disease severity				
Variable ^x	Correlation coefficient	P-value			
Temperature	-0.77	0.0002			
Rainfall	0.60	0.0081			
Dew point	-0.51	0.0309			
$RF \ge 0.05 cm^y$	0.51	0.0293			
$RF \ge 0.1 cm^y$	0.57	0.0141			
Relative humidity	0.31	0.2065			
Relative humidity hours ^z	0.21	0.3992			
Solar radiation	-0.48	0.0438			

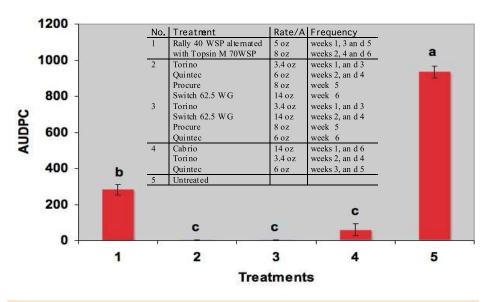
Table 4. Environmental variables correlated using Pearson's correlation coefficient with the average weekly bacterial leaf spot severity among the greenhouse inoculated, untreated plots from four field trials, N = 18 observations

* All environmental variables are the weekly averages except the number of hourly precipitation events.

^y Number of hourly precipitation events ≥ 0.05 cm or 0.1 cm.

^z Average number of weekly relative humidity hours \geq 90%.

- If cold + wet weather is expected in early spring, or during the season, there is risk of *Pseudomonas syringae* pv. lachrymans and related strains on watermelon, squash and other cucurbits.
- Copper + Ethylene Bis Dithiocabamate (e.g: Mancozeb) or Mankocide (pre-mix) can effectively manage the disease if applied early in the season
- Based on weather conditions, 2/3 applications may be needed early in the season.
- Do not use high rate of copper (Phytotoxicity issues on watermelon and other cucurbits)
- Actigard (SAR inducer is also useful in reducing the disease severity if applied early in the season)

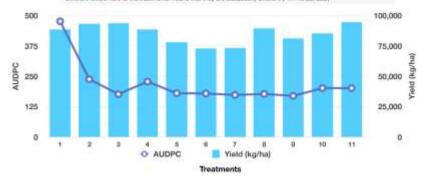

Powdery mildew

- Caused by Podosphaera xanthii and Erisiphe cichoracearum
- Talcum-like symptoms on the upper and lower side of the leaves
- First symptoms: Older leaves, or shaded lower leaves

- The PM fungi are obligate parasites
- Primary source of inoculum include conidia dispersed over long distances, from greenhouse cucurbits, and alternate hosts (mostly other cucurbits)

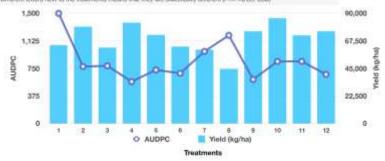
AUDPC- Area Under Disease Progression Curve (Higher the AUDPC, higher the disease)

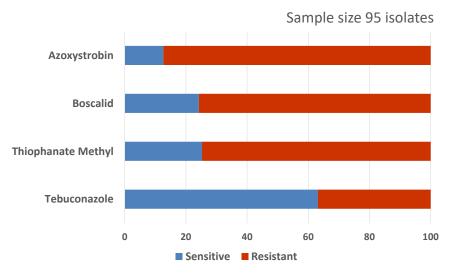
Variety, date of transplanting: Classic, March 28, 2011. Plant spacing: 20 plants placed 18 inches apart; Experiment layout: 4 replications, Randomized Complete Block Design, Statistics: Column means with the same letter are not significant different ($P \le 0.05$) based on Duncan's multiple range test


Gummy stem blight. Most destructive on watermelon. Can infect muskmelon, cucumber, pumpkin, and squash (recently reported to cause 40-100% losses) caused by *Stagonosporopsis* sp. (*D. bryoniae*)

Disease severity (AUDPC) and yield of watermelons - Spring 2016

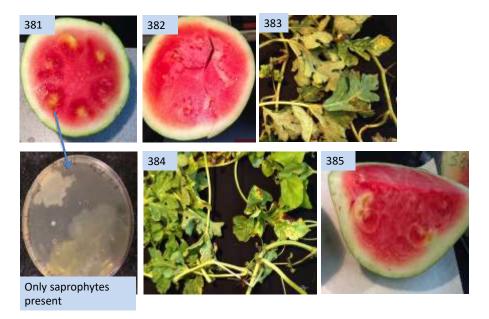
	TREATMENT (RATE/A)	AUDPO		(KG/HA)	
1	Control	477	*	88,594	
2	Bravo 2 pt (1-6 wk)	238	ь.	97,998	÷.
3	Aprovia Top 3.6F 10 & cz (1-6 wk)	176	ь	83,617	
ā.	Teburol 3.6 F 8 8 oz (1-5 wk)	228	b.	88,509	
8	Ph-D 11.3WDG 6.2 ct (1-6 wit)	180	b	78.065	
6	Ph-D 11.3WDG 6.2 oz + Tebuzol 6.1 oz (1-6 wil)	179	0	73,124	9
7	F1756aa 32 ft oz (1-6-wk)	173	ь	73,363	1
ä	Ph-D 11.3WDG 6.2 c2 + F1756aa 32 8 c2 (1-6 wk)	177	ь.	89,699	à
9	Ph-D 11.3WDG 8.2 oz = F1758au 22 8 oz (1-6 wł)	189	ь	80,990	
10	MgO 200 ppm (1-6 wk).	201	b	85,479	
11	MgO 500 ppm (1-6 sik)	201	b	94,385	

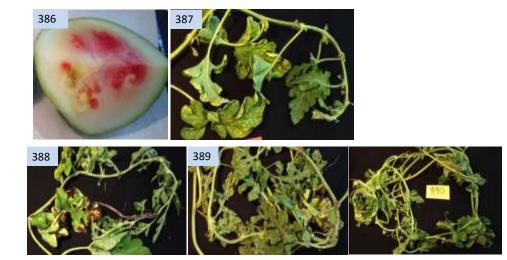

AUDPC: Area Under Disease Progress Curve. Higher the AUDPC, higher the classes beyondy over the period of the trial. Different latters next to the treatments means that they are statistically different (Po-F-0.05, LDD).


Disease severity (AUDPC) and yield of watermelons - Spring 2015

	TREATMENT (RATE/A)	AUDPC		VIELD (KG/HA)	
1	Control (Untreated)	1,497	a	63,776	ab
2	Actinovate AG (6 ca)	773	t:	78.710	ab
3	Actinovate AG (6 cz) + Actigard (0.5 cz)	783	DØ.	61,991	ab.
4	Topguird EQ (5 ft cu) (1-8 wk)	568	đ	82,074	ab
5	Topguard EQ (8 fl oz) (1-6 wk)	727	00	72,332	ab
6	Topguard EQ (16 fl cc) (1-6 wk)	661	00	62,796	ab.
7	Equation (11 ft od) (1-6 wk)	979	bc	60,293	ab
8	Equation (15:5 fl oz) (1-6 wk)	1,198	ab	44,531	\$
	Quadris Top (12 # oct) (1-6 wk)	898	τđ	74,977	ab
10	Bravo WeatherStik (2 pt) (1-3 wil) alt Oso (6.5 fl oz) (4-6 wk)	842	b-d	86,014	
11	Bravo WeatherStik (2 pt) (1-3 wk) alt Oso (6.5 fl oz) (4-6wk) alt Tebustar 3.6L (8 fl oz) (7-8 wk)	844	b-d	71.624	ab
12	Bravo WeatherStik (2 of) (1-3 will alt Tebustar 3.6L (8 fl op) (4-5will) alt Inspire Super (20 flop) (6-7 wk)	866	00	75.227	ab

AUDPC: Area Under Disease Progress Curve. Higher the AUDPC: higher the disease seventy over the period of the triol. Different letters next to the treatments means that they are statistically different (Pr.# 40.05, USD).




Resistance is present, but varies among the fungicide classes.

- Rotation of non-cucurbit crops (bahiagrass pastures excellent)
- Duration of rotation: >2 years after a single cucurbit crop with an outbreak of Gummy stem blight
- High level of isolate resistance to Quadris (azoxystrobin), Endura (Boscalid) and Topsin (T-methyl) in growers fields in FL and GA **and is risky to use**.
- Rotate, Rotate, available modes of action
- Preventative sprays important
- **Chlorothalonil:** Follow label instructions on watermelon after fruit set. Do not apply on mature watermelons under dry and hot conditions.

Watermelon fruit quality issues and associated viruses in FL and GA in 2016-2017

Cucurbit leaf crumple virus (CuLCrV)

BEGOMOVIRUS: First found in Florida on squash in 2006.

The virus can infect cucumber, muskmelon, squash, pumpkin, watermelon and bean.

However infection on watermelon was not very high till recently in N. Florida. Historically, no indication of any fruit quality issues on watermelon (However, fruits from infected yellow straightneck squash can have green streaks making them unmarketable). Vectored in a persistent manner by various biotypes of white fly including adult silver leaf whitefly biotype B.

n	Date San	ple ID	Type	Location	Cultivar				Moloc	ular testii	N /7		
The 2016	Jate San	ipie iD	Type	Location	Cultival		DNA					RNA	
confirmations						ID	Description	Begomovirus	Virus ID	ID	Description	Potyvirus	Virus ID
of CuLCrV and a	/6/16	381	Fruit	GA	Fascination	381-1 H 381-1 I	Fruit Fruit	+++++	CuLCrV CuLCrV	381	Fruit	+	WMV
.						381-2 H	Fruit	+	CuLCrV	561	Trun	+	
Potyvirus						381-2 I	Fruit	+	CuLCrV				
Watermelon ¹⁰	/6/16	382	Fruit	GA	Exclamation	382-1	Fruit	+	CuLCrV	382	Fruit	+	WMV
						382-2	Fruit	+	CuLCrV				
			Leaves & Stems Leaves & Stems	GA GA	Sweet Dawn Exclamation		Leaf Leaf	NT NT	NT NT	383 384	Leaf Leaf	+	WMV WMV
		385	Fruit	FL	Joy Ride	385 H	Fruit	+	CuLCrV	364	Lean	+	** .*1 *
(WMV; aphid		565	Truit	IL.	Joy Kide	385 I	Fruit	+	CuLCrV				
• • • 10/	/6/16	386	Fruit	FL	Exclamation	386 H	Fruit	+	CuLCrV				
transmitted) in						386 I	Fruit	+	CuLCrV				
- 10/			Leaves & Stems	GA	NA		Leaves	+	CuLCrV				
			Leaves & Stems	GA	NA		Leaves	+	CuLCrV				
			Leaves & Stems Leaves & Stems	GA GA	NA NA		Leaves	++++	CuLCrV CuLCrV				
		409	Fruit	FL	Exclamation	409 H1	Fruit	+	CuLCrV				
		10,5	Trun		Exclamation	409 H2	Fruit	+	CuLCrV	409 H1	Fruit	+	NT
in N. Florida						409 I1	Fruit	+	CuLCrV	409 I1	Fruit	+	NT
and C. Caaraia						409 I2	Fruit	+	CuLCrV	409 I2	Fruit	+	NT
and S. Georgia 10/	18/16	410	Fruit	FL	Exclamation	410 H1	Fruit	+	CuLCrV				
						410 H2	Fruit	+	CuLCrV	410 H1	Fruit	+	NT
						410 I1 410 I2	Fruit Fruit	+++++	CuLCrV CuLCrV	410 I1 410 I2	Fruit Fruit	+	NT
						410 Seed	Seed	+	CuLCrV		Seed	+	NT
10/	19/16	411	Fruit	FL	Joy Ride	411 H1	Fruit	+	CuLCrV		beed		
						411 H2	Fruit	+	CuLCrV	411 H1	Fruit	+	NT
						411 II	Fruit	+	CuLCrV	411 II	Fruit	+	NT
						411 I2	Fruit	+	CuLCrV	411 I2	Fruit	+	NT
10/2	20/16	412	Fruit	FL	Joy Ride	412 H1	Fruit	+	CuLCrV				
						412 H2 412 I1	Fruit Fruit	+	CuLCrV CuLCrV	412 H1 412 II	Fruit Fruit	+	NT NT
						412 II 412 I2	Fruit	+++++	CuLCrV	41211 41212	Fruit	+	NT
10/3	21/16	413	Fruit	FL	Joy Ride	413 H1	Fruit	+	CuLCrV	41212			
						413 H2	Fruit	+	CuLCrV	413 H1	Fruit	+	NT
						413 II	Fruit	+	CuLCrV	413 II	Fruit	+	NT
						413 I2	Fruit	+	CuLCrV	413 I2	Fruit	+	NT
10/2	22/16	414	Fruit	FL	Joy Ride	414 H1	Fruit	+	CuLCrV				
						414 H2	Fruit	+	CuLCrV		Fruit	+	NT
						414 I1 414 I2	Fruit Fruit	++++	CuLCrV CuLCrV	414 I1 414 I2	Fruit Fruit	+	NT
10/	23/16	415	Fruit	FL	Joy Ride	414 12 415 H1	Fruit	+	CuLCrV	41412	riuit	-	-
10.					-09 1000	415 H2	Fruit	+	CuLCrV	415 H1	Fruit	+	NT
						415 II	Fruit	+	CuLCrV	415 II	Fruit	-	
						415 I2	Fruit	+	CuLCrV	41512	Fruit	+	NT

Cucurbit yellow stunting disorder virus (CuLCrV)

CRINIVIRUS: First found in Florida in 2007.

The virus can infect melon, watermelon and squash.

Fruits may appear normal, but can have reduced sugars, and may not ship or store well.

In S. Florida, pigweed has been found to be a non-symptomatic host for the virus.

Potyviruses: Squash vein yellowing virus (SqVYV) - watermelon vine decline white fly; can cause fruit quality issues in watermelon Papaya ringspot virus - watermelon (PRSV-W) - aphid

		Location	SqVYV Potyvirus	PRSV-W Potyvirus	CuLCrV Begomoviru	CYSDV Crinivirus	Lab			Bacterial pathog present? – Paret	
			White fly	Aphid	s White fly	White fly			372	Pseudomonas fle and Enterobacter	
1	Fruit	FL, Suw	+	-	+	+	Adkins		403	-	
2	Fruit	FL, Suw	-	+	-	-	Adkins		404	-	
3	Fruit	FL, Suw	-	-		+	Adkins		405	Pseudomonas pu	
3	TTUIL	1 L, 3u w	-	-		т			406	Pseudomonas pu	
4	Fruit	FL, Suw	-	+	+	+	Adkins	1	407	P. putida & other	
5	Fruit	FL, Suw	-	-	-	+	Adkins		408	Pseudomonas pu	
6	Fruit	FL, Suw	-	-	+	+	Adkins		409	-	
7	Fruit	NC	-	-	-	-	Adkins	ļ	410	Serratia nematodophila &	
8	Fruit	FL, Mad	-	-	+	+	Paret	1			putida
9	Fruit	FL, Mad	-	-	+	+	Paret		411	Enterobacter spp Pseudomonas sp	
10	Fruit	FL, Mad	-	-	+	+	Paret		412	Enterobacter spp	
11	Fruit	FL, Mad	+ (Poty)	+ (Poty)	+	+	Paret			Pseudomonas sp	
12	Fruit	FL, Mad	+ (Poty)	+ (Poty)	+	+	Paret		413	Enterobacter spp	
12	Fruit	FL, Mad	+ (Poty)	+ (Poty)	+	+	Paret		414	Acinetobacter sp Enterobacter spp	
								1	415	Klebsiella spp, an	

2017: Mixed infection of CuLCrV, CYSDV, SqVYV and/or PRSV, in N. Florida watermelons.

	Bacterial pathogens present? – Paret
372	Pseudomonas flectans and Enterobacter spp.
403	-
404	-
405	Pseudomonas putida
406	Pseudomonas putida
407	P. putida & other spp.
408	Pseudomonas putida
409	-
410	Serratia nematodophila & P. putida
411	Enterobacter spp. and Pseudomonas spp.
412	Enterobacter spp. and Pseudomonas spp.
413	Enterobacter spp.
414	Acinetobacter spp. and Enterobacter spp.
415	Klebsiella spp, and Enterobacter spp.
	403 404 405 406 407 408 409 410 411 412 411 412

Can infections of CuLCrV and CYSDV by itself or mixed or in the presence of SqVYV/PRSV-W/WMV be the cause of fruit quality issues in watermelon?

We do not know for sure, but it may be the case. An example of a mixed infection of SqVYV with PRSV-W causing fruit quality issues (Adkins et al. 2013)

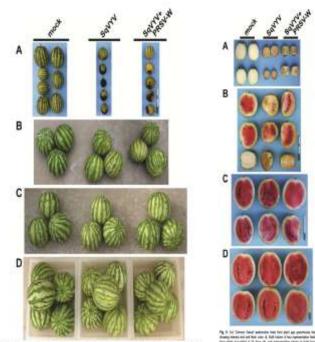
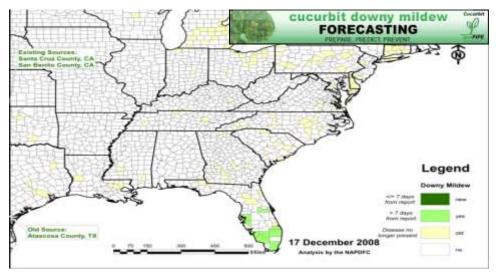


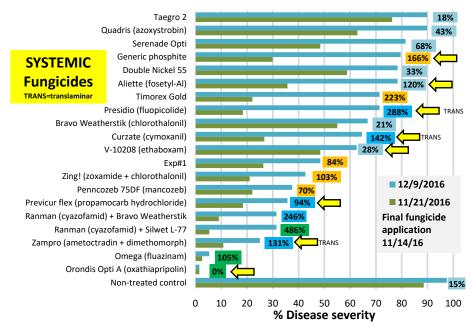
Fig. 4. Network here bade automotives from per appropriate the interrupt and the network of their technological strategies and and the first of the set of their and their experiment flow and the first operation of the set of the

nonling minimum and their same al. Not have a fract representation holds on proofs broadward at 2 to the other proof of the second at the fraction and receptor at $B \in C$. An $r \in E$ of depice of the fraction are speaked for matching theorem to the second at the second at the second at BCP of representation minimum of a STREE in the second at BCP of representation minimum of a STREE in the second at

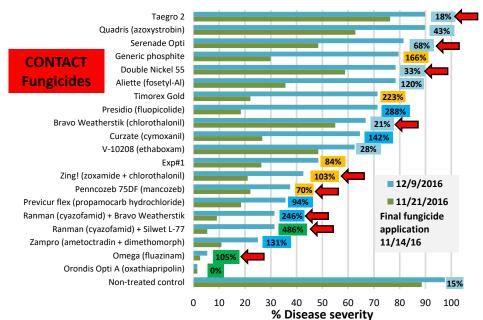

Downy Mildew: *Pseudoperonospora cubensis*

 Downy Mildew infects leaves only; rare case of sporulation on fruits and flowers

New sporangia are produced within 4-12 days from infection sites


- The Downy mildew pathogen is an obligate parasite. Needs a cucurbit host.
- During winter season, the causal organism survives on cucurbit production in south FL
- Primary inoculum: Air-borne sporangia from infected cucurbits
- Secondary inoculum: air currents, rain splash, contact by workers and tools

Fungicides Labelled for Cucurbit Downy Mildew


FRAC	Fungicide-active ingredients	Trade Name*	
M1	copper compounds	many brands	
M3	mancozeb	many brands	
M5	chlorothalonil	many brands	
4	mefenoxam	Ridomil	Resistance
11	strobilurins	Quadris, Cabrio, Flint	Resistance
21	cyazofamid	Ranman	Caution
22	zoaxamide	Gavel & Zing!	
27	cymoxanil	Curzate, Tanos & Ariston	
28	propamocarb	Previcur Flex	Caution
29	Fluazinam	Omega	
40	dimethomorph	Acrobat, Forum	Resistance
40	mandipropamid	Revus	Resistance
43	fluopicolide	Presidio	Caution
45	ametoctradin	Zampro	`
U15	oxathiapiprolin	Orondis	

*<u>Resistance</u> based on published studies and field data; <u>Caution</u> indicates product failure observed in published University reports.

Change in CDM Severity - Nov 21st to Dec 9th

Change in CDM Severity - Nov 21st to Dec 9th

Summary for Fall 2016 Downy mildew Trial, GCREC, Balm

 Based on change in downy mildew severity from Nov 21st to Dec 9th, few materials had effective residual control.

- Exception of Omega (contact) and Orondis Opti (systemic), both exhibited effective residual control for 3 weeks.
- Most contact fungicides (Bravo, Penncozeb, Zing!) and biologicals (Double Nickel, Serenade Opti, Taegro) had low to moderate efficacy, and relatively fair residual control
 - Ranman was a big exception
- Many systemic fungicides exhibited poor residual control: Aliette, Curzate, Ranman, Presidio, and the generic phosphite.
 - Presidio (translaminar) had the worst residual control, followed by Curzate (translaminar) and Zampro (translaminar)

Mathews Paret, 850-875-7154 paret@ufl.edu

United States Department of Agriculture National Institute of Food and Agriculture

