

Warm-Season Annual Legumes: Past, Present, and Future

Forage Legume Conference 2018

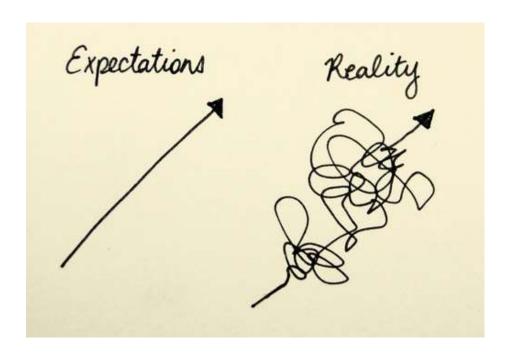
Joao Vendramini Forage Specialist

Outline

- Introduction
- Aeschynomene
- Cowpea
- Sunnhemp
- Final Remarks

UF FLORIDA

- The predominance of warmseason grasses in subtropical and tropical grazing systems created the culture that every forage needs to be perennial and persistent under low-input systems
- Lack of persistence of the legume is the main factor limiting the adoption of warm-season grass x warmseason legume mixed pastures


UF FLORIDA

 Overseeding cool-season annual legumes every year is acceptable but warm-season legumes need to be perennial?

- Are the expectations realistic?
- Do warm-season legumes need to be perennial?

- Warm-season annual legumes may have superior herbage accumulation, nutritive value, and be used in grazing systems as a component of the forage resources
- In addition, some warm-season legumes may reseed and be present in grass-legume mixtures for many years.

Outline

- Introduction
- Aeschynomene
- Cowpea
- Sunnhemp
- Final Remarks

- Aeschynomene americana
- Aeschynomene evenia

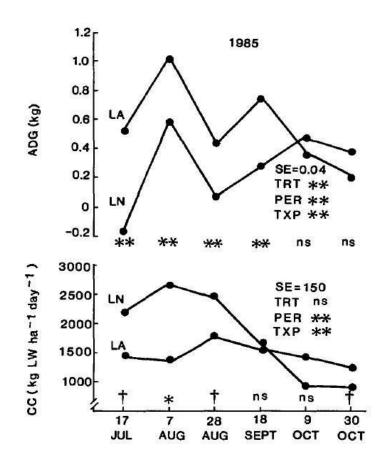
- Aeschynomene is a self-regenerating annual herbaceous legume adapted to seasonally waterlogged soils
- Early season rainfall is crucial for Aeschynomene development and persistence. Kalmbacher et al. (1993) seeded Aeschynomene in 17 dates and there was no germination in 6 dates due to decreased soil water potential (- 15 kPa)

- It is known that Aeschynomene has symbiotic relationship with Bradyrhizobium strains and it is detected that some of the relationship is Nodindependent using the similar mechanisms (Chaintreuil et al. 2013)
- Currently, general cowpea inoculant is recommended for the first time that Aeschynomene is seeded in the area

Nutritive value

	Stubble height (inches)	
	3	7
Herbage accumulation (lb/acre)	3100	2300
CP (%)	17.5	19.5
IVDOM (%)	60	62

Mislevy et al. (1981)


Animal Performance

LA= Limpograss + aeschynomene

LN = Limpograss + N fertilization (160 lb N/ac in 5 applications)

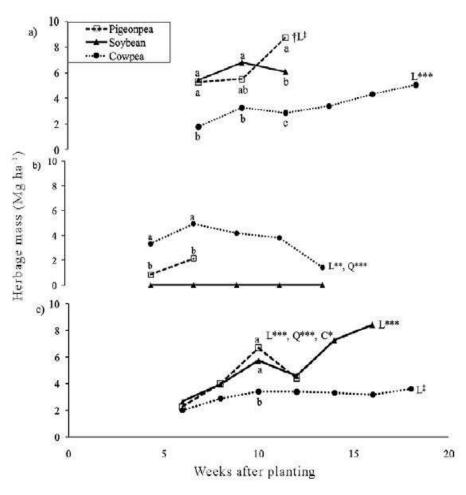
Mean ADG LA = 1.2 lb/dLN = 0.6 lb/d

Mean LW LA = 581 lb/acre LN = 830 lb/acre

Rusland et al. (1988)



- It is recommended to graze Aeschynomene between 3-6 inches and stop grazing before autumn flowering (Chaparro et al., 1991)
- Sollenberger et al. (1992) observed that seed reserve was a major factor in reestablishing Aeschynomene in limpograss pastures. In addition, disking the pasture in the spring favored Aeschynomene reseeding.


Outline

- Introduction
- Aeschynomene
- Cowpea
- Sunnhemp
- Final Remarks

 Cowpea (Vigna unguiculata) is a annual, fastgrowing legume used as cover crop, wildlife food plots, and forage for livestock

- Cowpea usually benefits from inoculation with Bradrizhobium spp, commercially known as cowpea commercial inoculant
- Silva Junior et al. (2018) observed that selected strains of Bradrizhobium can double cowpea N fixation (from 33 to 60 lb N/acre).

Foster et al. (2009)

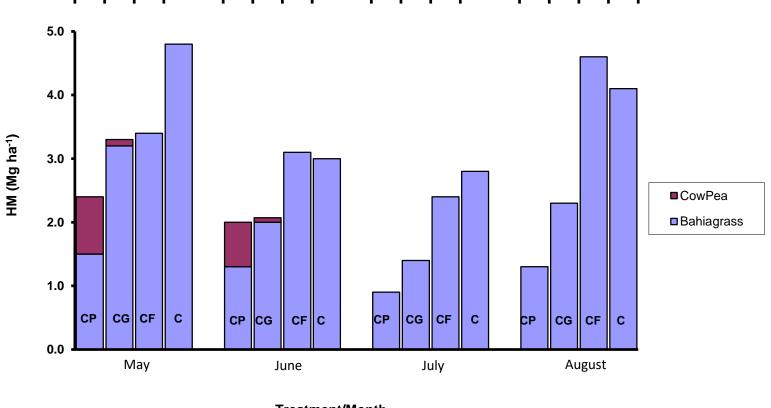
Nutritive Value

	Cowpea	Rhizoma peanut	Bahiagrass
CP (%)	28.2a	20.3b	10.3c
NDF (%)	25.1b	35.3b	70.0a

Foster et al. (2009)

UF FLORIDA

Animal Performance



Animal Performance

Treatment/Month

Vendramini et al. (2012)

Animal Performance

Animal Performance

Treatment	HA	Cow ADG	Calf ADG
	(lb DM/lb LW)	(lb/d)	(lb/d)
Cowpea	0.8b	0.30	1.47b
Creep Grazing	1.3a	0.24	1.47b
Creep Feeding	1.6a	0.24	1.80a
Control	1.5a	0.44	1.54b
SEM	0.2	0.13	0.08

Vendramini et al. (2012)

Outline

- Introduction
- Aeschynomene
- Cowpea
- Sunnhemp
- Final Remarks

UF FLORIDA

• Sunnhemp (*Crotalaria juncea*) is a tall herbaceous annual plant widely grown in the tropics, primarily as cover crop

- The genus Crotalaria includes some species known to be toxic to livestock
- The toxic compound pyrrolizidine alkaloid is primarily found in Crotalaria seeds
- According to Mosjidis et al. (2012), sunnhemp is a valuable source of forage without toxic effects to animals
- However, seeds should not be part of the animal diet

• Effects of including sunnhemp seeds in in vitro digestibility of stargrass

	Treatment (g seed/2 L Rumen Fluid + Buffer			SE
	0	30	60	
IVTD (%)	52a	48a	39b	1.5

Vendramini et al. (unpublished data)

- General cowpea inoculant has been recommended for sunnhemp seed inoculation
- Limited information available in the literature

Treatment	HA (lb DM/acre)	CP (%)
Inoculated	1820	19.5
Non-inoculated	1860	19.6
SE	218	0.6

Dubeux et al. (unpublished data)

Cultivars

Cultivar	Harvest time		SE
	60 d	Flowering	
	lb DN		
AU Golden	1800b	3500c	300
Blue Leaf	1340c	13100a	
Crescent Sun	3000a	13600a	
Ubon	1740b	4470b	

Vendramini et al. (unpublished data)

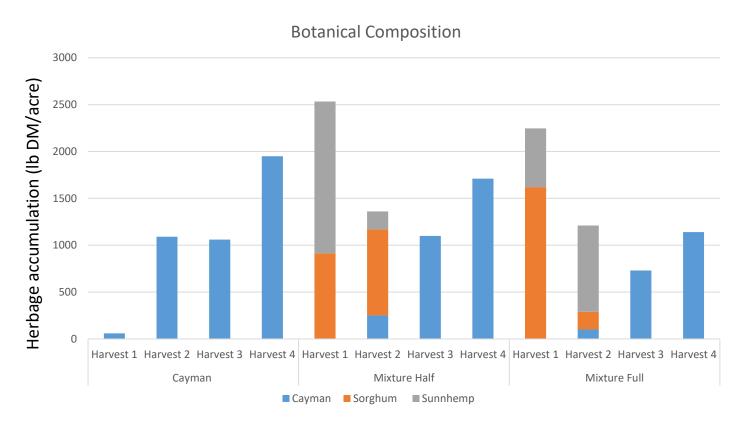
UF FLORIDA

Nutritive Value

Weeks after seeding	CP (%)	IVTD (%)
4	31.6a	72a
5	22.3b	69a
6	14.3c	61b
7	12.6d	59c
SE	1	3

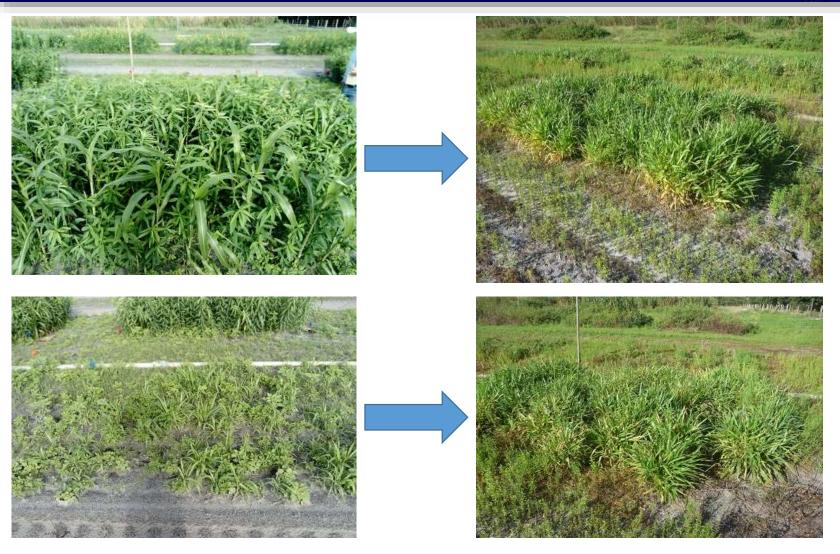
Vendramini et al. (unpublished data)

UF FLORIDA


Sunnhemp forage intake and in vivo digestibility

Treatment	Forage intake (% BW)	In vivo DMD (%)
Sunnhemp	1.2b	52a
Sunnhemp + Bermudagrass	1.4b	52a
Bermudagrass	1.6a	48b
SE	0.1	1.3

Vendramini et al. (unpublished data)



Forage species mixtures at establishment

Vendramini et al. (unpublished data)

UF FLORIDA

Outline

- Introduction
- Aeschynomene
- Cowpea
- Sunnhemp
- Final Remarks

Final Remarks

UF FLORIDA

- Past: Aeschynomene is still the most used warmseason legume in South Florida due to extensive research and extension efforts from the 80' and 90'
- According to Muir et al. (2010), Aeschynomene is one of the few successful histories of using warmseason legumes in grazing systems in the world

Final Remarks

- Present: Current focus on warm-season perennial legumes, primarily the genus Arachis.
- Demand for fast growing legumes for cover crops, food plots, and forage may increase the interest for warm-season annual legumes
- To generate sound and unbiased research data to verify if warm-season annual legumes may be an economic viable alternative to N fertilizer and a reliable source of forage for livestock

Final Remarks

UF FLORIDA

- Future: If research certifies that warm-season legumes may be viable, a coordinated extension effort will be necessary to change the culture of "perennials" in tropical and subtropical regions
- By the way, the future starts after this slide.

Thanks!

Joao Vendramini
Forage Specialist
UF/IFAS Range Cattle Research and Education Center
jv@ufl.edu

