Beef Genomics 101

Jared Decker Associate Professor and Beef Genetics Specialist deckerje@missouri.edu 573-882-2504 Twitter: @pop_gen_JED Blog and Facebook: A Steak in Genomics™

How?

How? SUSTAINABILITY: STEWARDSHIP RESPONSIBILITY PROFITABILITY

EPDS

Work!

Selection Decisions

Phenotypic Selection

Does NOT account for environmental differences!

Less accurate

EPDs Defined

Expected

- Prediction of the Future
- Average or Mean

Progeny

Calves

Difference

- Compare two animals
- Compare animal to breed average

Relatedness is KEY

EPDs in Practice

Do EPDs Work?

Thompson Research Center

781 calves from 231 cows with GeneMax Advantage Scores

Thompson Research Center

EPDs in Practice

Calf Performance

Thompson Research Center ^{University of Missouri}

Weaning Weight is increasing 1.5 pounds per year

Thompson Research Center University of Missouri

Birth Weight is decreasing 0.27 pounds per year

Thompson Research Center ^{University of Missouri}

Marbling is increasing 0.47 units per year

Thompson Research Center ^{University of Missouri}

Carcass Weight is increasing 4.3 pounds per year

EPDS

Work!

Traditional EPDs

Two-Step Genomic-Enhanced EPDs

Single-Step Genomic-Enhanced EPDs

The Dance Steps of Genomics Part I: Understanding Genomic Prediction The Dance Steps of Genomics Part II: Using Genomics in Your Herd

	Paternal Grandsire	Paternal Granddam	Maternal Grandsire	Maternal Granddam	Sire	Dam	Animal
Paternal Grandsire	1	0	0	0	0	0	0.25
Paternal Granddam	0	1	0	0	0	0	0.25
Maternal Grandsire	0	0	1	0	0	0	0.25
Maternal Granddam	0	0	0	1	0	0	0.25
Sire	0	0	0	0	1	0	0.5
Dam	0	0	0	0	0	1	0.5
Animal	0.25	0.25	0.25	0.25	0.5	0.5	1

Pedigree Relationship Matrix

	Paternal Grandsire	Paternal Granddam	Maternal Grandsire	Maternal Granddam	Sire	Dam	Animal
Paternal Grandsire	1	0	0.17	0	0	0	0.20
Paternal Granddam	0	1	0	0	0	0	0.30
Maternal Grandsire	0.17	0	1	0	0	0	0.33
Maternal Granddam	0	0	0	1	0	0	0.17
Sire	0	0	0	0	1	0.11	0.5
Dam	0	0	0	0	0.11	1	0.5
Animal	0.20	0.30	0.33	0.17	0.5	0.5	1.07

Genomic Relationship Matrix

Use Genomic Predictions

• BUY BULLS WITH GE-EPDS

- Increases EPD precision/reliability
- Identify genetic differences between flush mates
- Equivalent to 10 to 20 progeny
- Reduces risk

Heifer Genomic Predictions

- Have to use the information to see return on investment!
- Test many more heifers than you plan to keep
 - Genomics provides additional information for ranking
 - Increased precision of genomics re-ranks heifers

Pick the right test!

- If testing a registered animal, use the breed association's genomic prediction to produce GE-EPDs!
- If testing commercial straightbred cattle, if a breed specific test is available, USE IT!
- Breed-specific test is going to outperform multiple-breed test

Under appreciated traits

- Stayability/Sustained Cow Fertility
- Heifer Pregnancy
- Mature Cow Weight
- Milk (push towards average or lower)

Multiple Trait Selection

Which trait is most important?

Multiple Trait Selection

Which trait is most important? PROFIT!

Select for it using an economic selection index

What is an economic index?

- Combination of EPDs weighted according to their economic importance
- Expressed as a dollar value
- Breeds have different indexes
- Different indexes for different marketing
 endpoints

- Used embryos from flushes to produce:
- 25 Low \$B calves
- (average \$47.40 \$B)
- 18 High \$B calves
- (average \$141.12 \$B)

 Low \$B had GeneMax Feeder Advantage index average of 27

 High \$B had GeneMax Feeder Advantage index average of 94

 Breeding values (twice the progeny difference) predicted profit differences of \$187.38 between average of the two groups

- Breeding values (twice the progeny difference) predicted profit differences of \$187.38 between average of the two groups
- Actual difference was \$215.47

Reaping the Value of Genomics

Premiums for heifers with various classifications

Predicted premiums for heifers with various classifications, based on mixed model analysis of 2008 to 2017 sale reports.

		Standard	
Variable	Effect	Deviation	p-value
Show-Me-Plus	\$153.13	29.59	2.75e-07
Tier II	\$66.27	11.07	2.36e-09
Artificial inseminated pregnancy	\$106.23	7.12	<2.2e-16
Number of heifers per lot	\$17.29	2.35	2.27e-13
Sale Weight	\$0.79/pound	0.03	<2.2e-16

ROI ranges from 255%-545% for Show-Me-Plus heifers

Genomic ROI: Early Returns Suggest Premium for Show-Me-Plus Heifers http://blog.steakgenomics.org/2016/02/genomic-roi-early-returns-suggest.html See http://agebb.missouri.edu/select/prgmreq.htm for more information.

Get Paid For What They Are Worth

Average of heifer crop

Average of steer crop

Value Added Genetic Based Marketing Programs

Research Highlights

Reproductive Tract Scores

Applied Reproductive Strategies in Beef Cattle Ruidoso, NM 2018 http://www.appliedreprostrategies.com/2018/newsroom.html

Pregnancy Rates by Reproductive Tract Score

Subspecies	RTS 2	RTS 3	RTS 4	RTS 5
<i>Bos indicus</i> influenced	35%	39%	52%	55%
Bos taurus	32%	46%	50%	52%

National Center for Applied Reproduction & Genomics University of Missouri

Training in reproductive and genetic technologies for veterinarians, veterinary students, producers and other industry professionals

Genomics of Puberty and Fertility

- ~6,000 Angus samples
- Proposal under review for ~2,500 Hereford and ~2,500 Red Angus
- 1,500 Bos indicus influenced females available
 - Seeking funding

Identifying Local Adaptation and Creating Region-Specific Genomic Predictions in Beef Cattle

http://blog.steakgenomics.org/2016/05/local-genetic-adaptation-grant.html

Hair Shedding

- 1 to 5 subjective score
- "Hair shedding scores: A tool to select heat tolerant cattle"

http://articles.extension.org/pages/74069/hair-shedding-scores:-a-tool-to-select-heat-tolerant-cattle

Breed

- AN: 2,935
- ANR: 708
- CHA: 285
 - CROS: 439
- GEL: 282
- HFD: 1,273
- SH: 276
- SIM: 1,831

Hair Shedding and Weaning Weight

- Comparing adjusting calf weaning weight with adjusting hair shedding score of the dam,
- Decreasing hair score by 1 unit results in an increased weaning weight of 12.6 pounds (p = 0.056).

EPDs Work!

deckerje@missouri.edu 573-882-2504 Twitter: @pop_gen_JED Blog: A Steak in Genomics™

