Agronomic practices regarding industrial hemp production for cannabinoids: A pilot study in Florida

Josh Freeman Rui Yang Erin Berthold Sarah Benevenute

What is Industrial Hemp

Cannabis sativa with THC < 0.3% per dry weight

Botanically: indistinguishable from marijuana **Legally**: distinguished by THC content

Economically: potentially valuable alternative crop **Ecologically**: potential invasive species

Why Industrial Hemp

Multi-use crop

- Fiber (textiles)
- Food (hemp seed oil, greens)
- Feed (forage)
- Building material (hempcrete)
- Bioplastics
- Medicinal (CBD extract)
- Environmental remediation

Hemp Basics

Grain (Seed)

Fiber (Stem)

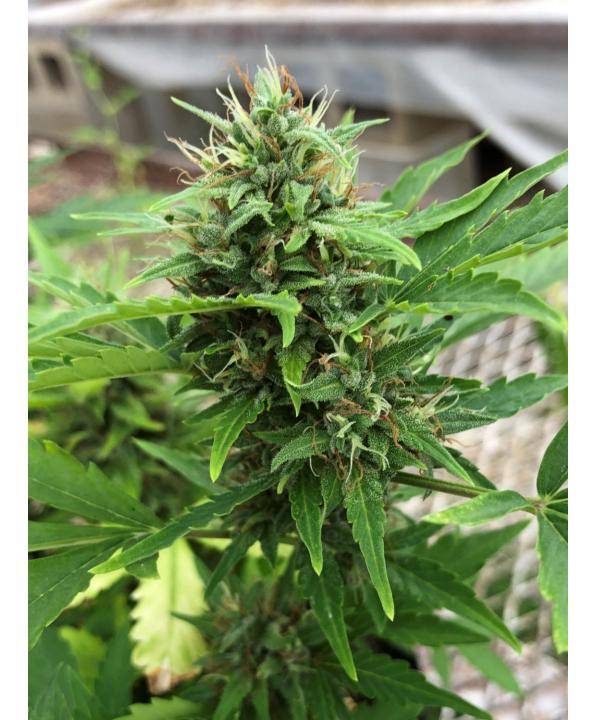
 Has been grown in Europe, Canada, and China
 Pilot project in Kentucky
 Typical "commodity" crop model with mechanization

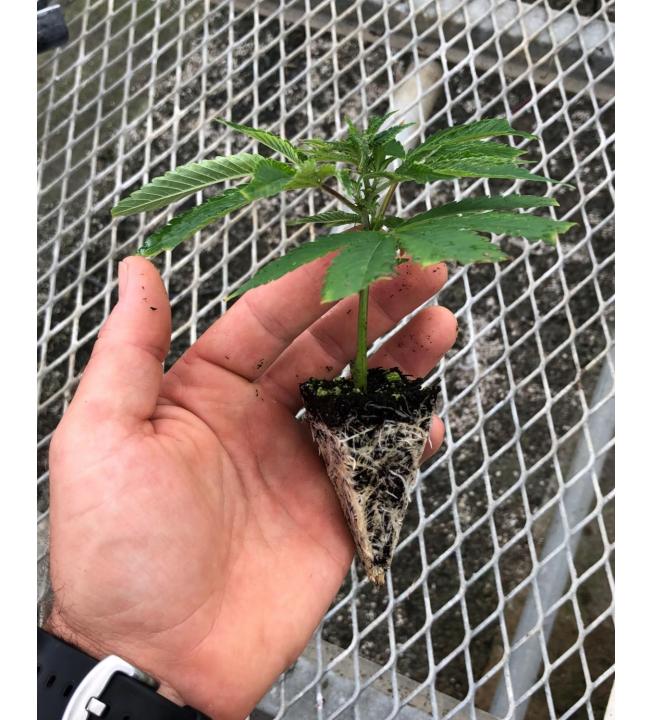
Industrial Hemp

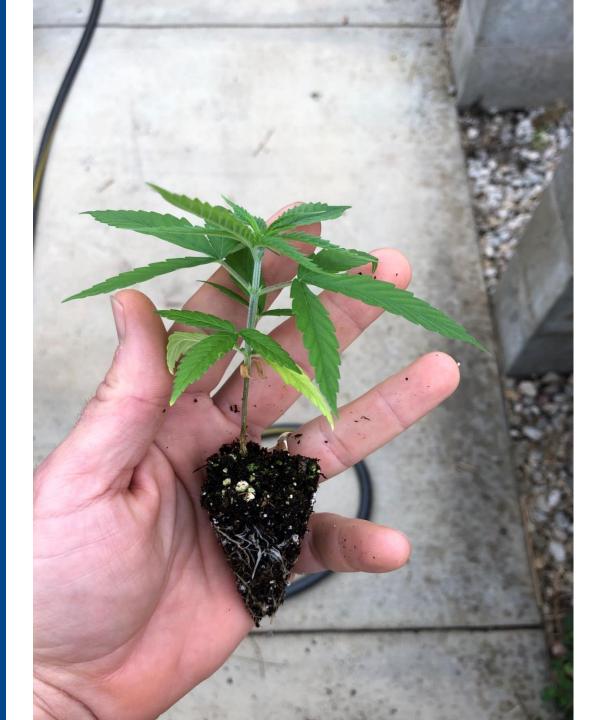
CBD (Female flower)

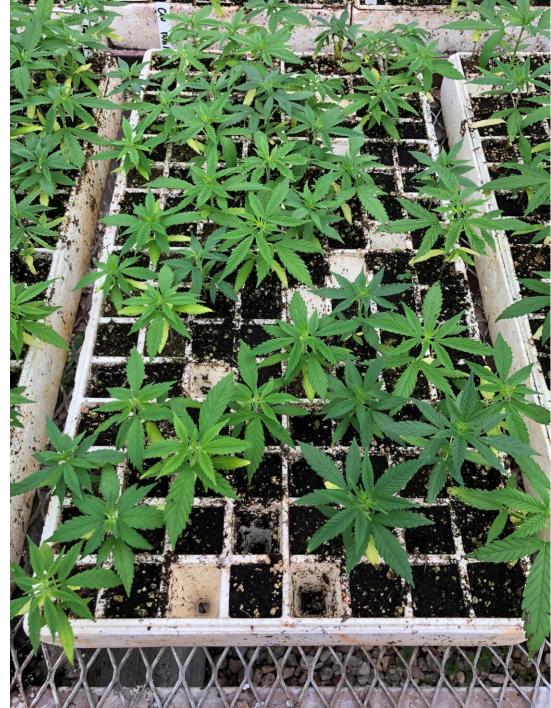
- Typical "specialty" crop model
- Mechanization is coming but currently not ready
- Very little information is published on how to grow CBD-type industrial hemp

What is Industrial Hemp


Hemp Basics


Most varieties are day-length sensitive


- ✓ Vegetative during long days Flower during short days
- ✓ Defined growing season outdoors late May early July
- Can be grown from seedlings or "clones" (rooted cuttings)
 - ✓ Cost differential between the two \$1.50 \$7


Only female plants are desirable for CBD production

- ✓ Feminized seed or rooted cuttings from female plants
- Desirable extracts are contained in the trichomes found primarily on female flowers (buds)
- ✓ Pollination is detrimental male plants must be rogued

Hemp Basics

- Plants must be dried, and female flowers must be stripped from stems (for most processors)
 - ✓ Mechanization is coming but not ready at this time
- > No registered pesticides (herbicide, insecticide, fungicide)
 - ✓ Weed control is a serious problem
 - ✓ Caterpillar pests are a serious problem

UF/IFAS Research Objectives

The Goal Support the future viability and sustainability of an industrial hemp industry

The Plan Industry funded research and outreach at UF/IFAS research facilities with a multidisciplinary team to:

- ✓ Identify hemp varieties suitable for planting in Florida's various environments
- ✓ Develop hemp management practices and cropping systems economically viable for Florida
- Assess hemp invasion risk in Florida's natural and agricultural environments

- Evaluated varieties (5)
 - Day-length-sensitive varieties (3)
 - ✓ Cherry Blossom (CBL), Cherry ×T1 (CT1), and Cherry Wine (CW)
 - ✓ Two planting dates (PD): July 3, 2019 and July 25, 2019
 - Day-length-neutral varieties (2)
 - ✓ KayaGene 9201 (KG9201) and KayaGene 9202 (KG9202)
 - ✓ Two planting dates (PD): July 3, 2019 and September 11, 2019
- Raised bed plasticulture production
 - □ 6 ft row spacing and 5 ft in-row spacing
 - □ Irrigation was applied using drip tape
 - Fertilizer
 - ✓ N: 150 lb/acre
 - ✓ P₂O₅: 100 lb/acre
 - ✓ K₂O: 200 lb/acre

➡ ~1450 plants per acre

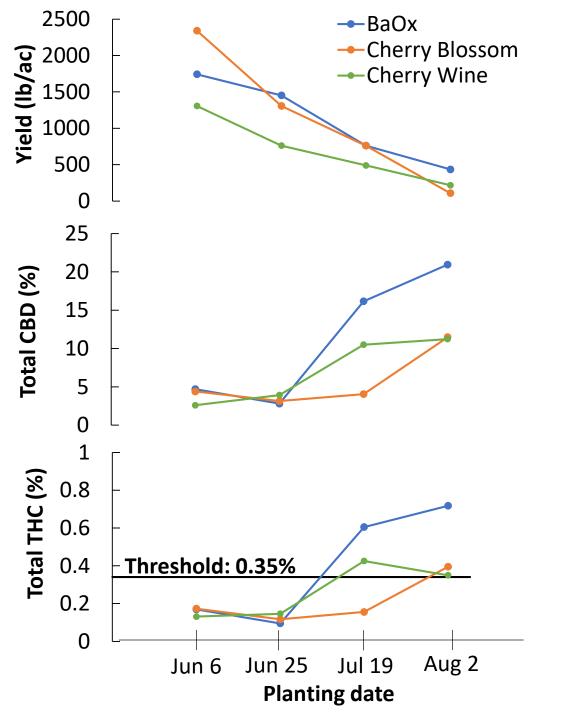
- Day-length-sensitive varieties
 - The SAME date of flowering for both planting date: 8/7/2019 (day length: ~13.5 h)
 - ✓ Planting date 1--vegetative stage 35 d + reproductive stage 50 d = total 85 d
 - ✓ Planting date 2--vegetative stage 14 d + reproductive stage 70 d = total 84 d

Variaty	Flower yield	THC	CBD	CBG
Variety	(lb/acre)		% dry weigl	ht
Planting da	ite – July 3, 2019			
CBL	2730 a	0.521 ab	9.589 a	0.197 ab
CT1	2424 b	0.582 a	10.254 a	0.260 a
CW	2352 b	0.474 b	8.927 a	0.189 b
Planting da	ite – July 25, 2019			
CBL	1326 ab	0.502 ab	9.477 a	0.208 a
CT1	1467 a	0.607 a	10.923 a	0.246 a
CW	703 b	0.473 b	8.895 a	0.201 a

§ Different uppercase letters indicate significant differences between the two planting dates, and lowercase letters indicate significant differences among varieties for each planting date

Day-length-neutral varieties

- Planting date 1
 - ✓ Flowered at 21 d after seeding
 - ✓ vegetative stage 21 d + reproductive stage 50 d = total 71 d
- Planting date 2
 - ✓ Flowered at 38 d after seeding
 - \checkmark vegetative stage 18 d + reproductive stage 32 d = total 50 d


Variaty	Flower yield	THC	CBD	CBG			
Variety	.y (lb/acre)		% dry weig	ght			
Planting dat	Planting date – July 3, 2019						
KG 9201	66 a	0.28 a	4.54 a	0.20 a			
KG 9202	149 a	0.31 a	5.56 a	0.21 a			
Planting dat	te – September 25, 201	.9					
KG 9201	77 a	0.33 a	6.28 a	0.22 b			
KG 9202	100 a	0.38 a	7.30 a	0.32 a			

§ Different uppercase letters indicate significant differences between the two planting dates, and lowercase letters indicate significant differences among varieties for each planting date

- Different planting date
 - Data courtesy of Dr. Gilbert Miller, Clemson University, SC
 - □ As the planting date getting late,
 - ✓ Flower yield notably dropped
 - ✓ CBD and THC content notably increased

Similar planting date, different location

	Cherry I	Blossom	Cherry	y Wine
	SC	FL	SC	FL
Yield (lb/ac)	1307	2739	762	2360
CBD (%)	3.1	11.9	3.9	10.4
THC (%)	0.12	0.61	0.15	0.52

Plant density study

- Typical plant density used in current industrial hemp production for cannabinoids is 1500-2000 plants per acre
- Little information is available regarding how plant density affect flower yield and cannabinoid content
- > The same field setup as the variety trial except for the plant density
 - Two of the day-length-sensitive varieties including CT1 and CW
 - Different plant density (4) was achieved though different in-row spacing

In-row spacing	Plant	density
ft	plants per acre	plants per hectare
1.5	4840	12100
3.0	2420	6050
4.5	1613	4033
6.0	1210	3025

Plant density study

No significant variety × plant density interaction was observed (P > 0.05), therefore data was combined to demonstrate the impact of plant density

Plant density	Flower yield	Flower yield	THC	CBD	CBG
(plants/acre)	(lb/plant)	(lb/acre)		% dry weig	ht
4840	0.85 b	4288 a	0.56 a	11.82 a	0.24 a
2420	1.34 a	3256 b	0.54 a	11.78 a	0.22 a
1613	1.58 a	2452 c	0.58 a	11.99 a	0.23 a
1210	1.69 a	2056 c	0.58 a	11.96 a	0.22 a

§ Different lowercase letters indicate significant differences among plant densities

Plant density study

Assume

- ✓ CBD content is 10% and market price is \$3.5 per percent CBD per lb = \$35 per lb
- ✓ Clone = \$3 per plant and seed = \$1 per plant
- ✓ Labor = \$15 per hour
- ✓ 106 man-hours per acre for the lowest plant density based on our experience

Plant	Flower	Income from	e Cost from plant material						Cost from	Gross	income
density	yield	CBD	Clones	Seed	– labor	Clones	Seed				
per acre	lb/ac	dollar/ac	dollar/ac		dollar/ac	dolla	ar/ac				
4840	4302	150578	14520	4840	6360	129698	139378				
2420	3267	114345	7260	2420	3180	103905	108745				
1613	2460	86112	4839	1613	2115	79158	82384				
1210	2064	72230	3630	1210	1590	67010	69430				

> This is the ideal situation, but in reality...

Market is going down

https://panxchange.com/hemp-benchmarks-and-analysis-nov-2019/

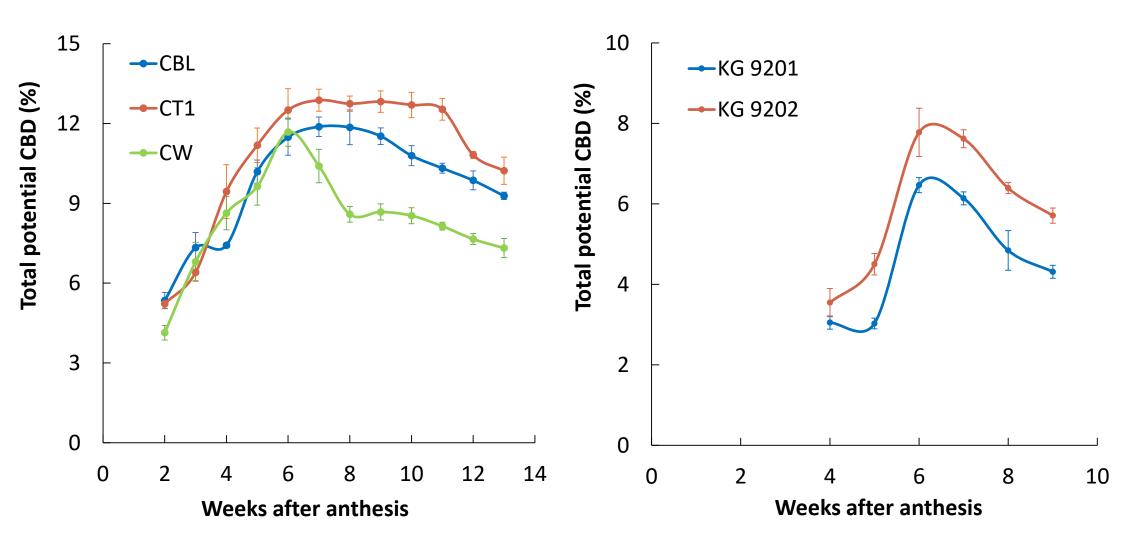
_

_

	Biomass Spot F Source	P <mark>ricing</mark> - ce: PanXc			2019				
	Region		Mic	dpoint		l	_ow	ŀ	ligh
Colorado (per 9	% CBD Content/lb.)		\$	1.14	-47%	\$	0.93	\$	1.35
Kentucky (per % CBD Content/lb.)				1.03	-53%	\$	0.80	\$	1.25
Oregon (per %	CBD Content/lb.)		\$	1.13	-45%	\$	0.85	\$	1.40
Plant density	Flower yield	Exped	cted	\$35 pe	r Ib	A	ctual	\$11	L.5 per
per acre	lb/ac		dolla	ar/ac			do	olla	r/ac
4840	4302		150)578	3-time		Z	194	73
2420	2420 3267		114345		lower	→ 37571			
1613	2460		86112		10000		2	282	90
1210	2064	72230 23736				36			

Cannabinoid development

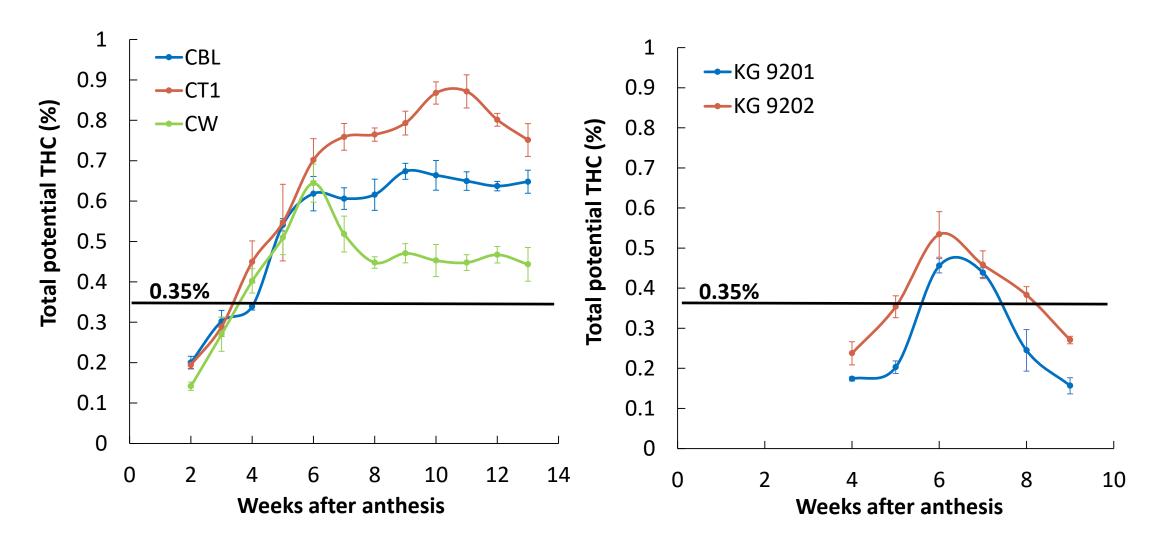
- Greater CBD content means greater revenue
- ➤ Industrial hemp must have a delta-9 tetrahydrocannabinol (THC) concentration of ≤ 0.3%, or a total potential THC of ≤ 0.35%, on a dry weight basis by law


```
Total potential THC = Concentration of THC + Concentration of THCA \times 0.877
```

- Knowing how CBD and THC content change over time during the growing season could provide valuable information on date of harvest and date of regulatory sampling
- > The same field setup as the variety trial
 - Included the 3 day-length-sensitive varieties (CBL, CT1, and CW) and the 2 day-length-neutral varieties (KG9201 and KG9202)
 - Flower samples were taken on a weekly basis from 2-4 weeks after anthesis to full senescence of the plants
 - □ Flower samples were taken from 5 uniform plants within each plot and thoroughly mixed for a composite sample

Cannabinoid development

Total potential CBD


□ A varietal difference existed

Cannabinoid development

Total potential THC

□ A varietal difference existed

Take-home points

- Day-length-sensitive varieties
 - A later planting date resulted in lower flower yield, but cannabinoid content was not affected
 - □ Cherry×T1 ≈ Cherry Blossom ≥ Cherry Wine
- Day-length-neutral varieties
 - Lower flower yield and cannabinoid content than day-length-sensitive varieties
 - Comparable flower yield and cannabinoid content between planting dates
 - ☐ KG9202 ≥ KG9201
- > A greater plant density may result in greater flower yield
- The CBD and THC development in flower synchronized during the growing season

Take-home points

- CBD and THC content
 - THC content increased above the legal threshold early in the season around 60 days post transplant
 - THC content remained above this threshold for the remainder of the season
 - In our study there was no difference in cannabinoid content between planting dates – July 3 vs July 25
 - It is unclear how and if environmental conditions affect THC development and concentration

REMINDER: This is one season of data from a limited number of varieties.

Acknowledgements

- Thanks to continued support of Green Roads, Inc. as well as other generous donors
- Thanks to the support of Mr. Sam Maxwell, Mr. Ronnie Pugh, and Dr. Katie Stevens in sample collection and process
- Mr. Jerry Fankhauser,
 Assistant Director of the
 Florida Agricultural
 Experiment Station
- Dr. Zack Brym, Assistant Professor, coordinator of the UF/IFAS Industrial Hemp Pilot Project

