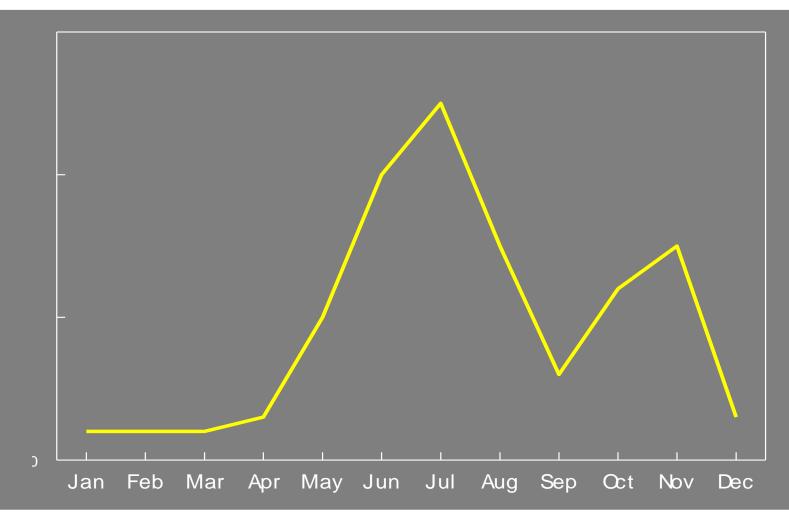
Insects That Impact Fruit Appearance & New Pest Management Challenges

Dr. Lauren Diepenbrock Citrus Entomology Extension Specialist UF/IFAS Citrus Research & Education Center Idiepenbrock@ufl.edu

Citrus Health Forum March 12, 2019

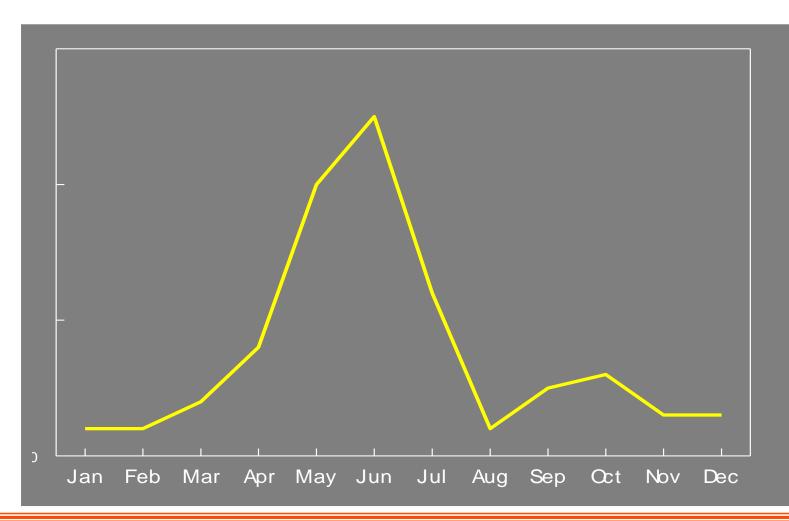


Insects that Impact Fruit Appearance

Citrus Rust Mite (CRM; Phyllocoptruta oleivora)

CRM populations peak in early summer in central FL, then again at a smaller scale in mid-late fall depending on weather.

Citrus Rust Mite (Phyllocoptruta oleivora)


- Damage
 - Feeding injury
 - Russeting of fruit & leaves
 - "sharkskin" = damage EARLY in fruit maturity
 - "bronzing" = damage LATER in fruit maturity
 - Distortion of new leaf growth
 - Lesions on lower surfaces & along midribs of mature leaves
- Quick ID
 - Tiny cone shape
 - Translucent to light yellow
 - Eggs look like water droplets

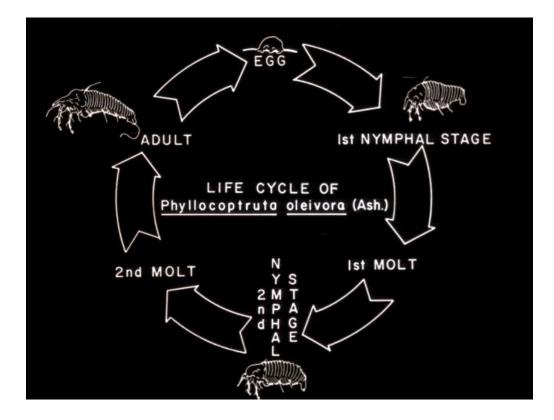
Pink Citrus Rust Mite (PCRM; Aculops pelekassi)

PCRM populations peak in mid spring/early summer in central Florida. Populations build up on flowers & leaves prior to feeding on fruit.

Pink Citrus Rust Mite (PCRM; Aculops pelekassi)

- Damage
 - Leaf loss with high pressure
 - PCRM start feeding on leaves & flowers before moving to fruit
 - Feeding injury on young fruit-leads to discoloration/"sharkskin" as fruit mature
- Quick ID
 - Tiny cone shape
 - Light pink color
 - Egg flat and opaque

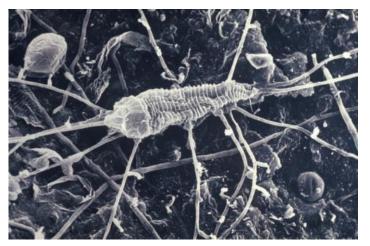
Leaf distortion on new growth


Bronzing over entire fruit because damage was done early in fruit's development

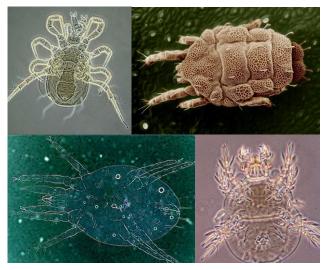
Citrus Rust Mite Life Cycle

- Females lay 2 eggs/day
 - ~30 eggs in a lifetime
- Egg \rightarrow adult in 6 days
- Adult male longevity approx. 6 days
- Adult female longevity approx. 14 days
- Populations can increase rapidly under ideal conditions

Citrus Rust Mite Control


- Hirsutella thompsonii fungus
- Predatory Arthropods

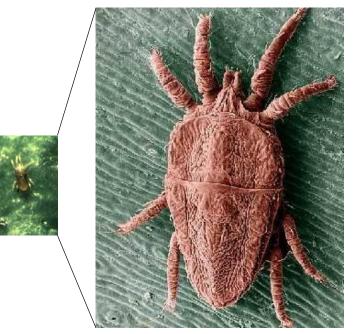
-predatory mites, lady beetles, ants, spiders, lacewing larvae


Insecticides

Action thresholds

-Processed fruit = 10 rust mites/ 2 cm²
1-3 oil or miticide applications/season
-Fresh fruit = 2 rust mites/ 2 cm²
3-5 miticide applications/season

Hirsutella fungus consuming rust mite


Predatory mites

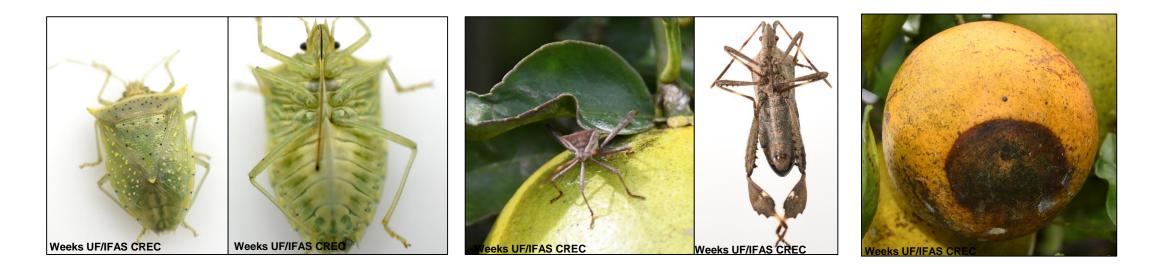
Brevipalpus mites

- Over 622 species in 26 genera worldwide
- False spider mites, flat mites
- Primarily found in tropical/subtropical areas
- Genus Brevipalpus most important economic group
- Toxic saliva causes feeding lesions
- Vectors of Citrus Leprosis

Brevipalpus mite and zoomed in micrograph of a *Brevipalpus* mite

Brevipalpus mite feeding damage

Brevipalpus mites & Leprosis


- Problem on sweet orange varieties
- Caused by virus that is not systemic in plant
- *B. phoenicis* is the only <u>confirmed</u> vector
- Miticide costs on Brazilian citrus exceed 90 million US dollars per year (Omoto 2000)
- Currently not in Florida (is present in Mexico)
- Symptoms:
 - Chlorotic leaf lesions becoming brown with or without necrotic centers
 - Flat or slightly raised necrotic areas on twigs and leaves
 - Flat or depressed lesions on fruit with concentric patterns and gumming

Piercing-Sucking Pests: Leaf-footed Bugs and Stinkbugs

Use piercing-sucking mouthpart to puncture fruit & feed. Feeding holes create openings for secondary pests/pathogens to enter including bacteria, fungi, and other insects.

Piercing-Sucking Pests: Leaf-footed bugs and Stinkbugs

- Management
 - Remove habitat
 - Weed control
 - IF using cover crops, avoid preferred hosts like peas
 - Insecticides if necessary- prophylactic treatment with Malathion*
 - Advisable prior to harvest of neighboring crops IF neighboring crop harbors these bugs (examples: tomato, peppers)

*Malathion is the primary material recommended for control of piercing-sucking plant bugs (FCPG)

Scales

- Several species of ARMORED SCALES can be problematic to fruit appearance
 - Red scale, purple scale, Chaff scale
- Scale insects in Florida have historically been under biological control by natural enemies
- Not currently considered key pests in the development of pest management programs

"Secrets to success" for biological control of scale insects

- Adult scales are sessile- either VERY slow moving or not moving at all
- High number of offspring to support natural enemy population growth
- Populations tend to be concentrated → easy for natural enemies to find
- IF biological control is unsuccessful, chemical treatment may be warranted. Insecticidal management should be targeted towards crawler stage.

Aggregation of red scale on green fruit

Florida red scale Chrysomphalus aonidum

- Damage
 - Feeding occurs on leaves, green twigs, and fruit
 - Feeding causes discoloration at the feeding site

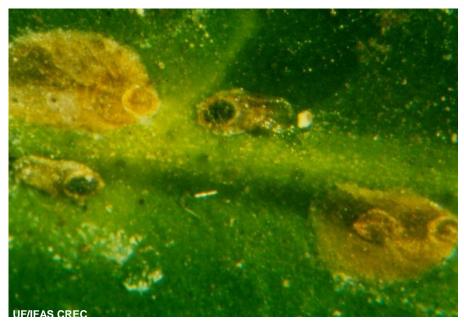
Florida Red Scale (Chrysomphalus aonidum)

- Red scale largely under biological control by parasitic wasps released in Florida (*Aphytis* wasps)
- Good example of successful classical biological control

Purple scale Lepidosaphes beckii

- Once major pest of fruit, leaves, and twigs
- Populations are highest in late spring/early summer
- Parasitoid (*Aphytis lepidosaphes*) introduced in 1950s to manage

Parasitoid emergence hole



Chaff scale Parlatoria pergandii

- Often found on trunk and inner canopy
- Fruit feeding causes spotting
- Slow rate of reproduction + parasitoid *Aphytis hispanicus* historically kept populations low

Thrips

- Flower thrips
 - Frankliniella bispinosa
 - Frankliniella kelliae
- Orchid thrips
 - Chaetanaphothrips orchidii
 - Danothrips trifasciatus

- Greenhouse thrips
 - Heliothrips haemorrhoidalis
- Chili thrips
 - Scirtothrips dorsalis

Orchid and Greenhouse Thrips

- Cause rind blemishes on developing fruit, in particular "ring spotting"
- Develop in protected areas (under calyx, between touching fruit)
- Primarily a problem on red grapefruit varieties but can occur on white grapefruit varieties as well

Ring scarring where fruit in clusters were touching

Monitoring Orchid and Greenhouse Thrips

- Examine interior clusters of red grapefruit when fruit are beginning to touch
- Use 10x hand lens to search for thrips (larvae and adults) on fruit where touching
- If most clusters sampled contain thrips, then insecticide application may be justified
- This damage is cosmetic in nature and does not affect internal fruit quality
 - Your market will determine management needs for fresh fruit

New Pest Management Challenges

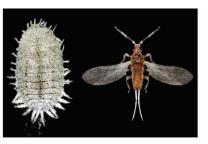
New pest in Florida citrus: Lebbeck mealybug (*Nipaecoccus viridis*)

- Can cause economic damage
- Export pest concern (EPPO)
- Serious pest around the world in citrus growing regions
- Known to cause significant damage, fruit drop
- First identified in 1894

Similar looking pests

Cottony cushion scale Jan 2020 Citrus industry

Wooly whitefly February 2020, L. Diepenbrock


Nipaecoccus viridis, lebbeck mealybug

Phenacoccus solenopsis, cotton mealybug

Pseudococcus longispinus, longtailed mealybug

Planococcus citri, citrus mealybug

Paracoccus marginatus, papaya mealybug

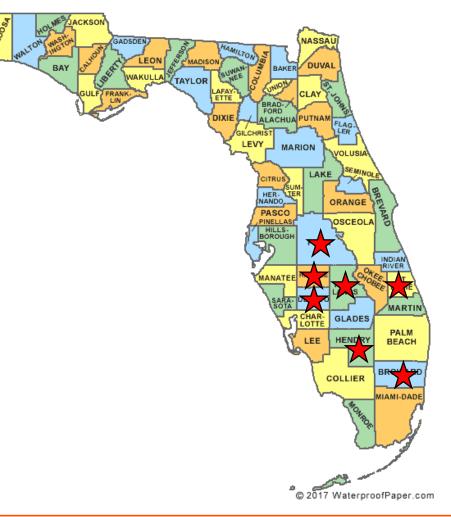
Maconellicoccus hirsutus, pink hibiscus mealybug

Distribution in Florida

SANTA

40,000+ acres surveyed since first find

- Commercial
 - Highlands
 - Hendry
 - DeSoto
 - Hendry
 - Polk
 - St. Lucie
- Residential
 - Broward



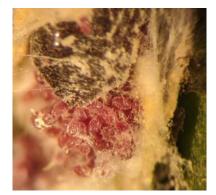


Image Credit: www.waterproofpaper.com/printable-maps/florida.shtml

Why is this becoming a problem now?

- Lebbeck mealybug is likely a pest of opportunity
- Interceptions in ports of entry and finding in wild habitat (2009) suggests it may have been here a while
- Persisted due to ideal conditions and lots of food resources
- Why citrus?
 - Most varieties are excellent hosts and used by the pest around the world
 - > decade of psyllid management = reduced predators in system AND psyllid sprays are unlikely to have much impact
 - Challenging to scout for until at high levels

Favored Environmental Factors

- A pest in tropical and subtropical environments
- Survives well in plant hardiness zones 9-11
 - BUT can overwinter in cold regions
- Thrives in high humidity (60%) and high temperatures (86°F)
- Feeds on fruit, vegetables, field crops, and ornamentals

UF IFAS Extension

NIVERSITY of FLORIDA

Host Plants

- Has many host plants such as fruit trees and ornamental plants
- This list contains common plants, but is <u>not all-inclusive</u>
- Jackfruit
- Asparagus
- Citrus
- Loquat
- Common fig

- Gardenia
- Soybean
- Cotton
- Hibiscus
- Mango

- Mulberry
- Avocado
- Pomegranate
- Potato
- Guava

Damage

- Not known to spread a disease
- Feeding damage from toxin mealybugs inject when they feed, causes fruit to "bubble"
- Fruit drop is the biggest damage assessed in other regions

Damage

- Fruit damage
 - Damaged fruit will not be marketable (fresh)
 - Juice quality?
- Leaves exhibit feeding damage
- Excessive sooty mold build up
- May stunt growth on young trees
- Can cause tree death in new plantings

Any questions?

Lauren M. Diepenbrock Idiepenbrock@ufl.edu 863-956-8801

