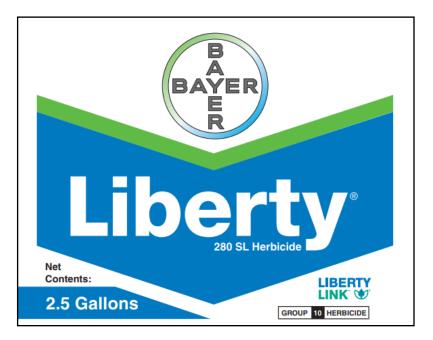
Spray Considerations and Technology for Effective Pesticide Applications

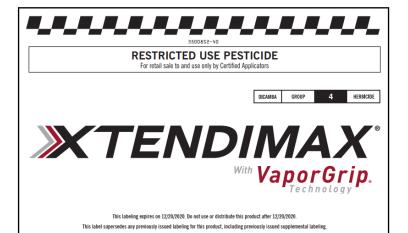

Simerjeet Virk

Extension Precision Ag Specialist University of Georgia

Nozzle Selection:

- Application (Herbicide, Fungicide or Insecticide)
- Mode of Action (Contact or Systemic)
- Check Label
- Application Rate, Speed, Pressure & Spacing

Pesticide Labels:



- Use nozzles and pressure that generate a MEDIUM to COARSE size spray droplet. NOTE: Weed control with very coarse, extremely coarse or ultra-coarse nozzles will not provide adequate coverage and will cause unsatisfactory weed control.
- Apply LIBERTY 280 SL HERBICIDE in a minimum of 15 gallons of water per acre. Increase to 20 gallons of water per acre if dense weed canopy exists.
- Apply at ground speed of less than 15 mph to attain adequate coverage.
- Apply when wind speeds are between 2 mph and 10 mph. DO NOT apply when winds are gusty, or when conditions will favor movement of spray particles off the desired spray target. See the Spray Drift Management section of this label for additional information on proper application of LIBERTY 280 SL HERBICIDE.

SPRAY DRIFT MANAGEMENT Spray Drift Restrictions

Spray drift may result in injury to non-target crops or vegetation. To avoid spray drift, do not apply when wind speed is greater than 10 MPH or during periods of temperature inversions. Do not apply when weather conditions, wind speed, or wind direction may cause spray drift to non-target areas. AVOIDING SPRAY DRIFT AT THE APPLICATION SITE IS THE RESPONSIBILITY OF THE APPLICATOR.

- All aerial and ground application equipment must be properly maintained and calibrated using appropriate carriers.
- For all non-aerial applications, wind speed must be measured adjacent to the application site, on the upwind side, immediately prior to application.

Do not allow herbicide solution to mist, drip, drift or splash onto desirable vegetation because severe injury or destruction to desirable broadleaf plants could result.

The most effective way to reduce drift potential is to apply large droplets that provide sufficient coverage and control. Applying larger droplets reduces drift potential, but will not prevent drift if the application is made improperly, or under unfavorable environmental conditions (see the "Temperature and Humidity" and "Temperature Inversions" sections of this label).

9.1.1 Sprayer Setup

The following sprayer setup requirements for drift management must be followed:

- Nozzle type. The applicator must use an approved nozzle within a specified pressure range as found at www.xtendimaxapplicationrequirements.com when applying XtendiMax®
 With VaporGrip® Technology. Do not use any other nozzle and pressure combination not specifically listed on this website.
- Spray Volume. The applicator must apply this product in a minimum of 15 gallons of spray solution per acre. See Section 8.0 for information on approved tank mix products.
- Equipment Ground Speed. Do not exceed a ground speed of 15 miles per hour. Select
 a ground speed that will deliver the desired spray volume while maintaining the desired
 spray pressure, but slower speeds generally result in better spray coverage and deposition
 on the target area. Provided the applicator can maintain the required nozzle pressure, it is
 recommended that tractor speed is reduced to 5 miles per hour at field edges.
- Spray boom Height. Do not exceed a boom height of 24 inches above target pest or crop canopy. Excessive boom height will increase the drift potential.
- Wind Speed. Do not apply when wind speeds are less than 3 MPH or greater than 10 MPH. Only apply when wind speed at boom height is between 3 and 10 mph.

9.1.2 Temperature and Humidity

When making applications in low relative humidity or temperatures above 91 degrees Fahrenheit, set up equipment to produce larger droplets to compensate for evaporation (for example: increase orifice size and/or increase spray volume as directed on www.xtendimaxapplicationrequirements.com). Larger droplets have a lower surface to volume ratio and can be impacted less by temperature and humidity. Droplet evaporation is most severe when conditions are both hot and dry.

11 Fungicide

Headline AMP[®]

Fungicide

Ground Application

DO NOT use less than 5 gallons per acre (gpa) spray volume on sugarcane and 10 gpa spray volume on corn for ground applications. Thorough coverage of foliage is required for optimum disease control. An adjuvant may be used to improve spray coverage. Refer to the adjuvant product label for specific use directions.

Information on Droplet Size

The most effective way to reduce drift potential is to apply large droplets. Use the largest droplet size consistent with acceptable efficacy. Applying larger droplets reduces drift potential but will not prevent drift if applications are made improperly or under unfavorable environmental conditions (see **Wind**; **Temperature and Humidity**; and **Temperature Inversions**).

Insecticide/Miticide

Droplet size

Use only Medium or coarse spray nozzles (for ground and non-ULV aerial application) according to ASAE (S572) definition for standard nozzles. In conditions of low humidity and high temperatures, applicators should use a coarser droplet size.

5 Revised 03-21-14

Additional Requirements for Ground Application

Wind speed must be measured adjacent to the application site on the upwind side, immediately prior to application.

For ground boom applications, apply using a nozzle height of no more than 4 feet above the ground or crop canopy. For airblast applications, turn off outward-pointing nozzles at row ends and when spraying the outer two rows. To minimize spray loss over the top in orchard applications, spray must be directed into the canopy.

Nozzle Information

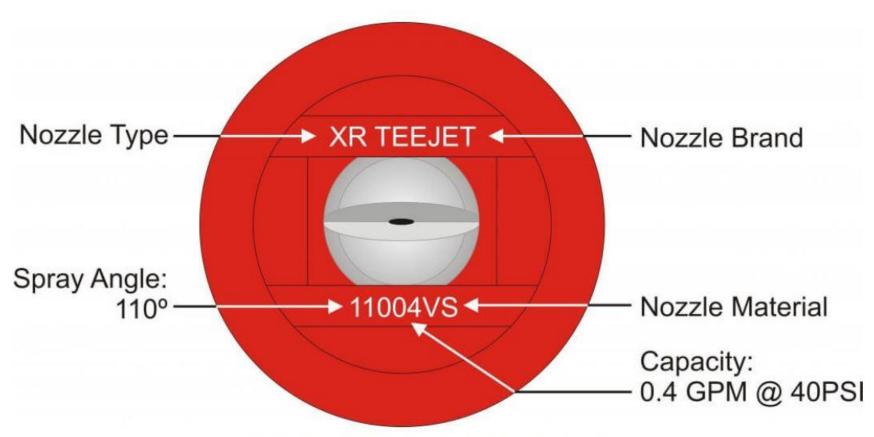


Fig. 1: Typical information printed on modern nozzles.

Nozzle color based on tip size (standard)

		Flow Rate							
Tip Size	Colour	US gpm @ 40 psi	L/min @ 3 bar						
01	Orange	0.10	0.4						
015	Green	0.15	0.6						
02	Yellow	0.20	0.8						
025	Lilac	0.25	1.0						
03	Blue	0.30	1.2						
035	Brown Red	0.35	1.4						
04	Red	0.40	1.6						
05	Brown	0.50	2.0						
06	Gray	0.60	2.4						
08	White	0.80	3.2						

Color Codes for Droplet Size

Category	Symbol	Color Code	Approx. VMD Range (microns)
Extremely Fine	XF	Purple	<60
Very Fine	VF	Red	60-145
Fine	F	Orange	145-225
Medium	М	Yellow	226-325
Coarse	С	Blue	326-400
Very Coarse	VC	Green	401-500
Extremely Coarse	EC	White	501-650
Ultra Coarse	UC	Black	>650

TeeJet Nozzle selection guide

le	ele	, HOLOG	705 7																					
r	7 /m>	8	110'XRXRC	П	TTJ60	AIXR	Al3070	AIITJ60	110fAl/AK	TTI60	ΠI						GP	a 🔼	20"	$\overline{\Delta}$				
Į.	R(m)	PSI	'5-60 PSI	'5-90 PSI	20-90 PSI	15-90 PSI	20-90 PSI	20-90 PSI	30-115 PSI	20-90 PS	15-100 PSI	GPM	4 mph	5 mph	6 mph	7 mph	8 mph	9 mph	10 mph	12 mph	14 mph	16 mph	18 mph	20 mph
Н		20	F	C	-	VC C	VC	-	— UC	-	UC UC	0.11	8.2	6.5	5.4	4.7	4.1	3.6	3.3	2.7	2.3	2.0	1.8	1.6
	015 I AICAIXR	30 40	F	M	_	C	C M	_	ХC	_	UC	0.13	9.7 11.1	7.7 8.9	6.4 7.4	5.5 6.4	4.8 5.6	4.3 5.0	3.9 4.5	3.2	3.2	2.4	2.1	1.9
Ala	1070 TT TTI	50 60	F	M	_	M	M M	_	VC VC	_	UC XC	0.17	12.6 13.4	10.1	8.4	7.2	6.3	5.6 5.9	5.0 5.3	4.2	3.6	3.2	3.0	2.5
	XR XRC (100)	70	-	M	-	M	M	-	VC	-	ХC	0.20	14.9	11.9	9.9	8.5	7.4	6.6	5.9	5.0	4.2	3.7	3.3	3.0
	,,	80 90	_	F	_	M M	F	_	VC C	_	VC VC	0.21 0.23	15.6 17.1	12.5 13.7	10.4 11.4	8.9 9.8	7.8 8.5	6.9 7.6	6.2 6.8	5.2 5.7	4.5 4.9	3.9 4.3	3.5 3.8	3.1 3.4
1.	02 LAICAIXR	20 30	F	VC C	C	VC VC	XC VC	XC VC	UC	UC UC	UC UC	0.14	10.4 12.6	8.3 101	6.9 8.4	5.9 7.2	5.2 6.3	4.6 5.6	4.2 5.0	3.5 4.2	3.6	2.6 3.2	2.3	2.1
	TTI TTI60	40	F	M	M	€	C	C	ХC	XC XC	UC	0.20	14.9	11.9	9.9	8.5	7.4	6.6	5.9	5.0	4.2	3.7	3.3	3.0
	NR NRC (50)	50 60	F	M	M	C M	M	C	XC VC	VC	UC XC	0.22	16.3 17.8	13.1	10.9 11.9	9.3	8.2	7.3 7.9	6.5 7.1	5.4 5.9	4.7 5.1	4.1	3.6 4.0	3.3
Al3	070 AITTJ60 TTJ60	70 80	_	M	M M	M	M M	M	VC VC	VC VC	XC VC	0.26 0.28	19.3 21	15.4 16.6	12.9 13.9	11.0 11.9	9.7 10.4	8.6 9.2	7.7 8.3	6.4 6.9	5.5 5.9	4.8 5.2	4.3 4.6	3.9 4.2
	(100)	90		F	M	M	F	М	VC	VC	VC	0.30	22	17.8	14.9	12.7	11.1	9.9	8.9	7.4	6.4	5.6	5.0	4.5
A	025 LAICAIXR	20 30	M F	VC C	VC C	XC VC	XC VC	XC VC	UC	UC UC	UC UC	0.18	13.4 16.3	10.7 13.1	8.9 10.9	7.6 9.3	6.7 8.2	5.9 7.3	5.3 6.5	4.5 5.4	3.8 4.7	3.3 4.1	3.0 3.6	2.7 3.3
	TTI TTI60	40 50	F F	M M	C M	VC C	C	VC C	XC XC	XC XC	UC UC	0.25	18.6 21	14.9 16.6	12.4 13.9	10.6 11.9	9.3 10.4	8.3 9.2	7.4 8.3	6.2	5.3	4.6 5.2	4.1 4.6	3.7 4.2
	XR XRC (50)	60	F	M	M		М	č	ХC	VC	UC	0.31	23	18.4	15.3	13.2		10.2	9.2	7.7	6.6	5.8	5.1	4.6
Al3	070 AITTJ60 TTJ60	70 80	_	M	M M	C	M	M	WC WC	VC VC	XC XC	0.33	25 26	19.6 21	16.3 17.3	14.0 14.9	12.3 13.0	10.9 11.6	9.8 10.4	8.2 8.7	7.0 7.4	6.1 6.5	5.4 5.8	4.9 5.2
	(100)	90	-	F	M	M	M	M	VC	VC	VC	0.38	28	23	18.8	16.1	14.1	12.5	11.3	9.4	8.1	7.1	6.3	5.6
A	03 I aicaixr	20 30	M F	VC VC	VC C	XC VC	UC VC	UC XC	UC	UC UC	UC UC	0.21	15.6 19.3	12.5 15.4	10.4 12.9	8.9 11.0	7.8 9.7	6.9 8.6	6.2 7.7	5.2 6.4	4.5 5.5	3.9 4.8	3.5 4.3	3.1
ΑIT	TJ60 AI3070 TTI TTI60	40 50	F	C M	C M	VC C	VC C	VC VC	XC XC	UC	UC UC	0.30 0.34	22 25	17.8 20	14.9 16.8	12.7 14.4	11.1 12.6	9.9 11.2	8.9 10.1	7.4 8.4	6.4 7.2	5.6 6.3	5.0 5.6	4.5 5.0
	NR NRC	60	F	M	M			€	VC	ХC	UC	0.37	27	22	18.3	15.7	13.7	12.2	11.0	9.2	7.8	6.9	6.1	5.5
	(50) TTJ60	70 80	_	M	M	C	M	C	WC WC	XC VC	XC XC	0.40	30 31	24	19.8 21	17.0 17.8	14.9 15.6	13.2 13.9	11.9 12.5	9.9	8.5	7.4	6.6	5.9 6.2
	(100)	90		F	M	M XC	M UC	M UC	VC	VC	XC UC	0.45	33 21	27	22 13.9	19.1	16.7 10.4	14.9 9.2	13.4 8.3	11.1 6.9	9.5 5.9	8.4 5.2	7.4 4.6	6.7 4.2
	04	20 30	M	VC C	VC C	ХC	ХC	ЖC	UC	UC	UC	0.35	26	16.6 21	17.3	11.9 14.9	13.0	11.6	10.4	8.7	7.4	6.5	5.8	5.2
	AIC AITTJ60 R AI3070 TT		M F	C M	M	VC VC	WC WC	WC WC	XC VC	UC UC	UC UC	0.40	30	24	19.8	17.0 19.1	14.9 16.7	13.2 14.9	11.9 13.4	9.9 11.1	8.5 9.5	7.4 8.4	6.6 7.4	5.9 6.7
	TTI60 TTJ60 XR XRC		F	M M	M M	VC C	VC C	C	VC VC	XC XC	UC XC	0.49	36 39	29 31	24 26	21	18.2 19.7	16.2 17.5	14.6 15.7	12.1 13.1	10.4 11.2	9.1 9.8	8.1 8.7	7.3 7.9
	(50)	80	=	M	M			M	VC	VC	ХC	0.57	42	34	28	24	21	18.8	16.9	14.1	12.1	10.6	9.4	8.5
H		90 20	M M	F VC	VC M	XC XC	UC	M UC	VC	VC UC	VC UC	0.60	45 26	36 21	30 17.3	25 14.9	13.0	19.8 11.6	17.8 10.4	14.9 8.7	12.7 7.4	11.1 6.5	9.9 5.8	8.9 5.2
	05	30 40	M	C M	C	XC VC	XC VC	XC VC	UC XC	UC UC	UC UC	0.43	32 37	26 30	21 25	18.2 21	16.0 18.6	14.2 16.5	12.8 14.9	10.6 12.4	9.1 10.6	8.0 9.3	7.1 8.3	6.4 7.4
	AIC AITTJ60 XR AI3070	50	F	М	č	VC	VC	VC	ХC	UC	UC	0.56	42	33	28	24	21	18.5	16.6	13.9	11.9	10.4	9.2	8.3
	TTI TTI60 I60 XR XRC	60 70	F	M	M	VC C	C	VC C	VC VC	XC XC	XC XC	0.61	45 49	36 39	30 33	26 28	23 25	20	18.1 19.6	15.1 16.3	12.9 14.0	11.3 12.3	10.1 10.9	9.1 9.8
	(50)	80	-	F	М			C	VC	VC VC	VC	0.71	53	42	35	30	26	23	21	17.6	15.1	13.2	11.7	10.5
		90 20	M	VC	VC	XC	-	UC	WC —	UC	VC UC	0.75	56 31	45 25	37 21	32 17.8	28 15.6	25 13.9	12.5	18.6 10.4	15.9 8.9	13.9 7.8	12.4 6.9	6.2
	06 ALAIC	30 40	M	C M	C	XC VC	_	XC VC	UC XC	UC UC	UC UC	0.52	39 45	31 36	26 30	22	19.3 22	17.2 19.8	15.4 17.8	12.9 14.9	11.0 12.7	9.7 11.1	8.6 9.9	7.7 8.9
	TTJ60 AIXR	50	M	M	C	VC	-	VC	ХC	UC	ХC	0.67	50	40	33	28	25	22	19.9	16.6	14.2	12.4	11.1	9.9
	TTI TTI60 I60 XR XRC	60 70	F —	M	M M	VC VC	_	C	XC VC	XC XC	XC VC	0.73	54 59	43 47	36 39	31 34	27 29	24 26	22	18.1 19.6	15.5 16.8	13.6 14.7	12.0 13.0	10.8 11.7
	(50)	80 90	-	F	M M	C C	-	C M	VC VC	XC XC	VC C	0.85	63 67	50 53	42 45	36 38	32 33	28 30	25 27	21 22	18.0 19.1	15.8 16.7	14.0 14.9	12.6 13.4
Г		20	C	VC	VC	UC	-	UC	_	UC	UC	0.57	42	34	28	24	21	18.8	16.9	14.1	12.1	10.6	9.4	8.5
	ALAIC	30 40	M	C M	VC C	XC XC	_	UC XC	UC UC	UC UC	UC UC	0.69	51 59	41 48	34 40	29 34	26 30	23 26	20 24	17.1 19.8	14.6 17.0	12.8 14.9	11.4 13.2	10.2 11.9
	TTJ60 AIXR	50 60	M M	M	C	VC VC	_	XC VC	XC XC	UC UC	UC UC	0.89	66 73	53 58	44 49	38 42	33 36	29 32	26 29	22 24	18.9 21	16.5 18.2	14.7 16.2	13.2 14.6
	160 XR XRC	70	-	F	C	VC	-	VC	VC	UC	UC	1.06	79	63	52	45	39	35	31	26	22	19.7	17.5	15.7
L	(50)	80 90	_	F F	M M	U C	_	VC C	VC VC	UC XC	XC XC	1.13 1.20	84 89	67 71	56 59	48 51	42 45	37 40	34 36	28 30	24 25	21 22	18.6 19.8	16.8 17.8
		20 30	C	XC VC	XC VC	UC UC	_	UC UC		_	UC UC	0.71 0.87	53 65	42 52	35 43	30 37	26 32	23 29	21 26	18 22	15 18	13 16	12 14	11 13
ΑП	10 TJ60 TTJ60	40	M	VC	VC	ХC	-	ÜC	UC	=	UC	1.00	74	59	50	42	3.7	33	30	25	21	19	17	15
	(50)	50 60	M M	C	VC C	XC VC	_	XC XC	XC XC	_	UC UC	1.12 1.22	83 91	67 72	55 60	48 52	42 45	37 40	33 36	28 30	24 26	21 23	18 20	17 18
AIC	AIXR TT TTI XR XRC	70 80	=	C	C C	VC VC	_	XC XC	XC VC	_	UC XC	1.32 1.41	98 105	78 84	65 70	56 60	49 52	44 47	39 42	33 35	28 30	25 26	22 23	20 21
		90	_	M	Č	VC	_	VC	VC	_	XC	1.50	111	89	74	64	56	50	45	37	32	28	25	22
$\overline{}$. 1					T _	$\overline{}$		$\overline{}$				人		12	_		_		<u></u>	₩/	7		GPA
FY	TREMELY	VERY	- 1	FINE	MEDIUM	COA	RSF WEE	WCOARCE	EXTREME	17 01	TRA	1	(L)	_	1	ŁŹ	_ 20".	\triangle	. 4	Tlp 5	pacing	_	Ca	onversion
Ü	INE (XF)	IVI	Fi T	(F)	(M)	ίč	1 1	Y COARSE VC	COARSE D	CI COĂŘ	SE ÎUCI		80°				30"				15"			1.33
	J143-R3 eeJet Techr	nologie:	s 2017										110°				20"				30^			0.67

GPM	ļ
	ı

ı	GPM	ļ
		ı
		۱

ı	GPM	ŀ

ı	GPM	ŀ
•		а.

ı	GPM	ŀ
•		١.

ı	сом	L
ı	GFIM	Г

	_	PSI	1560958	15-00 PSI	2040PSI	1540PSI	20400751	20-90PSI	30-115 PSI	20-90 PSI	15-100/99		mph	mph	mph	mph	mph	mph	mph	mph	mph	mph	mph	mph
	02	20	F	VC	C	VC	ХC	ХC	_	UC	UC	0.14	10.4	8.3	6.9	5.9	5.2	4.6	4.2	3.5	3.0	2.6	2.3	2.1
	AI AICAIXR	30	F	C	č	VC	VC	VC	UC	UC	ÜC	0.17	12.6	10.1	8.4	7.2	6.3	5.6	5.0	4.2	3.6	3.2	2.8	2.5
	IT ITI ITI60	40	F	M	M	C	C	C	ХC	XC	UC	0.20	14.9	11.9	9.9	8.5	7.4	6.6	5.9	5.0	4.2	3.7	3.3	3.0
	NR NRC	50	F	M	M	C	M	C	ХC	XC	UC	0.22	16.3	13.1	10.9	9.3	8.2	7.3	6.5	5.4	4.7	4.1	3.6	3.3
	(50)	60	F	M	M	M	M	C	WC	VC	ХC	0.24	17.8	14.3	11.9	10.2	8.9	7.9	7.1	5.9	5.1	4.5	4.0	3.6
A.	3070 AITTJ60	70	_	М	M	M	M	M	٧C	VC	ХC	0.26	19.3	15.4	12.9	11.0	9.7	8.6	7.7	6.4	5.5	4.8	4.3	3.9
	TTJ60	80	_	F	M	M	M	M	VC	VC	VC	0.28	21	16.6	13.9	11.9	10.4	9.2	8.3	6.9	5.9	5.2	4.6	4.2
	(100)	90	_	F	M	M	F	M	VC	VC	VC	0.30	22	17.8	14.9	12.7	11.1	9.9	8.9	7.4	6.4	5.6	5.0	4.5
	025	20	M	VC	VC	ХC	XC	ХC	_	UC	UC	0.18	13.4	10.7	8.9	7.6	6.7	5.9	5.3	4.5	3.8	3.3	3.0	2.7
ш	ALA ICAIXR	30	F	C	C	VC	VC	VC	UC	UC	UC	0.22	16.3	13.1	10.9	9.3	8.2	7.3	6.5	5.4	4.7	4.1	3.6	3.3
ľ	П ПП ПП 60	40	F	M	C	VC	C	VC	ХC	XC	UC	0.25	18.6	14.9	12.4	10.6	9.3	8.3	7.4	6.2	5.3	4.6	4.1	3.7
	XR XRC	50	F	M	M	C	C	C	ХC	XC	UC	0.28	21	16.6	13.9	11.9	10.4	9.2	8.3	6.9	5.9	5.2	4.6	4.2
ш	(50)	60	F	M	M	C	M	C	ХC	VC	UC	0.31	23	18.4	15.3	13.2	11.5	10.2	9.2	7.7	6.6	5.8	5.1	4.6
Al.	3070 AITTJ60	70	–	M	M	C	M	M	WC	VC	ХC	0.33	25	19.6	16.3	14.0	12.3	10.9	9.8	8.2	7.0	6.1	5.4	4.9
ш	TTJ60	80	_	F	M	C	M	M	WC .	VC	ХC	0.35	26	21	17.3		13.0	11.6	10.4	8.7	7.4	6.5	5.8	5.2
	(100)	90	_	F	M	M	M	M	VC	VC	VC	0.38	28	23	18.8	16.1	14.1	12.5	11.3	9.4	8.1	7.1	6.3	5.6
	03	20	M	VC	VC	XC	UC	UC		UC	UC	0.21	15.6	12.5	10.4	8.9	7.8	6.9	6.2	5.2	4.5	3.9	3.5	3.1
	AI AICAIXR	30	F	VC .	C	VC	VC.	XC	UC	UC	UC	0.26	19.3	15.4	12.9	11.0	9.7	8.6	7.7	6.4	5.5	4.8	4.3	3.9
	TTJ60 Al3070	40	F F	C	C	VC C	VC C	VC VC	ХС	UC UC	UC UC	0.30	22 25	17.8	14.9	12.7	11.1	9.9	8.9 10.1	7.4 8.4	6.4	5.6	5.0	4.5
	ППІП160	50 60	F	M	M M	, ,	2	ν. C	XC VC	XC	UC	0.34 0.37	27	20	16.8	14.4 15.7	12.6 13.7	11.2		9.2	7.2	6.3 6.9	5.6 6.1	5.0 5.5
	NR NRC	70		M M	M	č	0	C	VC VC	XC	XC	0.37	30	22	18.3 19.8	17.0	14.9	12.2 13.2	11.9	9.2	8.5	7.4	6.6	5.9
	(50) TTJ60	80	_	M	M	č	M	č	WC VC	VC	XC XC	0.42	31	25	21	17.8	15.6			10.4		7.8	6.9	6.2
	(100)	90		F	M	M	M	М	VC VC	VC	XC.	0.45	33	27	22	19.1	16.7	14.9	13.4	11.1	9.5	8.4	7.4	6.7
	Indep	20	M	VC	VC	XC	UC	UC		UC	UC	0.28	21	16.6	13.9	11.9	10.4	9.2	8.3	6.9	5.9	5.2	4.6	4.2
	04	30	M	Ċ	Ċ	XC	XC	XC	UC	ÜC	ÜC	0.35	26	21	17.3	14.9	13.0	11.6		8.7	7.4	6.5	5.8	5.2
a	AIC AITTJ60	40	M	Č	Ċ	VC	VC	VC	ХC	UC	ÜC	0.40	30	24	19.8	17.0	14.9	13.2	11.9	9.9	8.5	7.4	6.6	5.9
	XR AISO70 TT	50	F	М	M	VC	VC	VC	WC	ÜC	ÜC	0.45	33	27	22	19.1	16.7	14.9		11.1	9.5	8.4	7.4	6.7
	I TTI60 TTJ60	60	F	M	M	VC	VC	C	VC	XC	UC	0.49	36	29	24	21	18.2	16.2	14.6	12.1	10.4	9.1	8.1	7.3
	NR NRC	70	_	М	M	C	C	C	VC	XC	XC	0.53	39	31	26	22	19.7	17.5	15.7	13.1	11.2	9.8	8.7	7.9
	(50)	80	_	M	M	C	C	M	WC	VC	ХC	0.57	42	34	28	24	21	18.8	16.9	14.1	12.1	10.6	9.4	8.5
		90		F	M	C	C	M	WC	VC	VC	0.60	45	36	30	25	22	19.8	17.8	14.9	12.7	11.1	9.9	8.9

۰	•
EXTREMELY	VERY FINE
FINE (XF)	(VF)

FINE (F)

(C)



110°

20*

Tip Spacing	GPA Conversion Factor
15"	1.33
905	0.67

LI-TJ143-R3

			Numbers in Table Body are mph, nozzle spacing =										20 in		
Nozzle	Pressure	Flow rate	3	4	5	6	7	8	9	10	12	14	16	18	20
size	(psi)	(US gpm)	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa	gpa
	20	0.14	14.0	10.5	8.4	7.0	6.0	5.3	4.7	4.2	3.5	3.0	2.6	2.3	2.1
1000	30	0.17	17.1	12.9	10.3	8.6	7.3	6.4	5.7	5.1	4.3	3.7	3.2	2.9	2.6
0.2	40	0.20	19.8	14.9	11.9	9.9	8.5	7.4	6.6	5.9	5.0	4.2	3.7	3.3	3.0
	50	0.22	22.1	16.6	13.3	11.1	9.5	8.3	7.4	6.6	5.5	4.7	4.2	3.7	3.3
Yellow	60	0.24	24.2	18.2	14.5	12.1	10.4	9.1	8.1	7.3	6.1	5.2	4.5	4.0	3.6
	70	0.26	26.2	19.6	15.7	13.1	11.2	9.8	8.7	7.9	6.5	5.6	4.9	4.4	3.9
	80	0.28	28.0	21.0	16.8	14.0	12.0	10.5	9.3	8.4	7.0	6.0	5.3	4.7	4.2
	90	0.30	29.7	22.3	17.8	14.9	12.7	11.1	9.9	8.9	7.4	6.4	5.6	5.0	4.5
	20	0.18	17.5	13.1	10.5	8.8	7.5	6.6	5.8	5.3	4.4	3.8	3.3	2.9	2.6
	30	0.22	21.4	16.1	12.9	10.7	9.2	8.0	7.1	6.4	5.4	4.6	4.0	3.6	3.2
0.25	40	0.25	24.8	18.6	14.9	12.4	10.6	9.3	8.3	7.4	6.2	5.3	4.6	4.1	3.7
700000	50	0.28	27.7	20.8	16.6	13.8	11.9	10.4	9.2	8.3	6.9	5.9	5.2	4.6	4.2
Lilac	60	0.31	30.3	22.7	18.2	15.2	13.0	11.4	10.1	9.1	7.6	6.5	5.7	5.1	4.5
Statistics	70	0.33	32.7	24.6	19.6	16.4	14.0	12.3	10.9	9.8	8.2	7.0	6.1	5.5	4.9
	80	0.35	35.0	26.3	21.0	17.5	15.0	13.1	11.7	10.5	8.8	7.5	6.6	5.8	5.3
	90	0.38	37.1	27.8	22.3	18.6	15.9	13.9	12.4	11.1	9.3	8.0	7.0	6.2	5.6
	20	0.21	21.0	15.8	12.6	10.5	9.0	7.9	7.0	6.3	5.3	4.5	3.9	3.5	3.2
	30	0.26	25.7	19.3	15.4	12.9	11.0	9.6	8.6	7.7	6.4	5.5	4.8	4.3	3.9
0.3	40	0.30	29.7	22.3	17.8	14.9	12.7	11.1	9.9	8.9	7.4	6.4	5.6	5.0	4.5
	50	0.34	33.2	24.9	19.9	16.6	14.2	12.5	11.1	10.0	8.3	7.1	6.2	5.5	5.0
Blue	60	0.37	36.4	27.3	21.8	18.2	15.6	13.6	12.1	10.9	9.1	7.8	6.8	6.1	5.5
	70	0.40	39.3	29.5	23.6	19.6	16.8	14.7	13.1	11.8	9.8	8.4	7.4	6.5	5.9
	80	0.42	42.0	31.5	25.2	21.0	18.0	15.8	14.0	12.6	10.5	9.0	7.9	7.0	6.3
	90	0.45	44.6	33.4	26.7	22.3	19.1	16.7	14.9	13.4	11.1	9.5	8.4	7.4	6.7
100	20	0.25	24.5	18.4	14.7	12.3	10.5	9.2	8.2	7.4	6.1	5.3	4.6	4.1	3.7
0.35	30	0.30	30.0	22.5	18.0	15.0	12.9	11.3	10.0	9.0	7.5	6.4	5.6	5.0	4.5
	40	0.35	34.7	26.0	20.8	17.3	14.9	13.0	11.6	10.4	8.7	7.4	6.5	5.8	5.2
Brown Red	50	0.39	38.7	29.1	23.2	19.4	16.6	14.5	12.9	11.6	9.7	8.3	7.3	6.5	5.8
	60	0.43	42.4	31.8	25.5	21.2	18.2	15.9	14.1	12.7	10.6	9.1	8.0	7.1	6.4
	70	0.46	45.8	34.4	27.5	22.9	19.6	17.2	15.3	13.8	11.5	9.8	8.6	7.6	6.9
	80	0.49	49.0	36.8	29.4	24.5	21.0	18.4	16.3	14.7	12.3	10.5	9.2	8.2	7.4
	90	0.53	52.0	39.0	31.2	26.0	22.3	19.5	17.3	15.6	13.0	11.1	9.7	8.7	7.8
	20	0.28	28.0	21.0	16.8	14.0	12.0	10.5	9.3	8.4	7.0	6.0	5.3	4.7	4.2
	30	0.35	34.3	25.7	20.6	17.1	14.7	12.9	11.4	10.3	8.6	7.3	6.4	5.7	5.1
0.4	40	0.40	39.6	29.7	23.8	19.8	17.0	14.9	13.2	11.9	9.9	8.5	7.4	6.6	5.9
	50	0.45	44.3	33.2	26.6	22.1	19.0	16.6	14.8	13.3	11.1	9.5	8.3	7.4	6.6
Flame Red	60	0.49	48.5	36.4	29.1	24.2	20.8	18.2	16.2	14.5	12.1	10.4	9.1	8.1	7.3
	70	0.53	52.4	39.3	31.4	26.2	22.5	19.6	17.5	15.7	13.1	11.2	9.8	8.7	7.9
	80	0.57	56.0	42.0	33.6	28.0	24.0	21.0	18.7	16.8	14.0	12.0	10.5	9.3	8.4
	90	0.60	59.4	44.6	35.6	29.7	25.5	22.3	19.8	17.8	14.9	12.7	11.1	9.9	8.9

Fig 6: Five solutions for the question, "which nozzle to apply 7 gpa at 13 mph?"

Sprayer Calibration Method

Ounce or 1/128th acre method

+							
	Nozzle Spacing (in)	Distance (ft)					
	12	340					
	14	292					
	16	255					
	18	227					
	20	204					
	24	170					

Record the time (seconds) to travel the corresponding distance & collect the spray output for the same time from each nozzle

Liquid collected in ounces = rate in gallons per acre

Application Rate Calculations:

Application Rate
$$(GPA) = \frac{Nozzle\ flow\ Rate\ (GPM) \times 5940}{Speed\ (mph)\ \times Swath\ (inches)}$$

$$Rate (GPM) = \frac{Application \ rate (GPA) \times Speed \ (mph) \times Swath \ (in.)}{5940}$$

Boom Sprayer:

Distance to travel =
$$\frac{340 \times 12}{Nozzle Spacing (inches)}$$

A useful tool for checking nozzle flow rate

https://innoquestinc.com/product/spoton-sprayer-calibrator-model-sc-1/

https://www.amazon.com/Spot-On-SpotOn-Sprayer-Calibrator/dp/B00JRD6UA0

Water Sensitive Paper for assessing spray coverage

https://gemplers.com/products/teejet-water-sensitive-spray-cards

https://www.sprayerdepot.com/products/3-x-2-water-sensitive-paper

Good Acceptable Not Enough

Smartphone Apps for nozzle selection, calibration and coverage assessment:

A few worth investigating include:

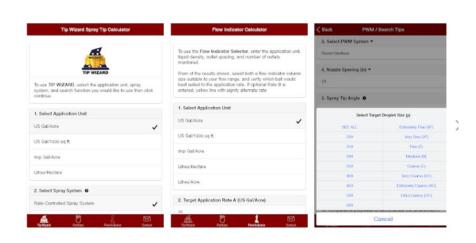
- TeeJet Spray Select provides recommended nozzle and operating pressure based on ground speed, tip spacing, target rate & droplet size requirements
- Ground Spray provides droplet size data for a wide range of spray tips spraying water or active ingredient
- Mix Tank provides the proper sequence for adding various active ingredients into tank mixes
- Calibrate My Sprayer used to assist in calibrating sprayers when doing a volume collection test.

SpraySelect

TeeJet Technologies Co. Business

€ Everyone

1 This app is compatible with all of your devices.


Tip Wizard Spray Tip & Flow Indicator Selector

INCICATOR SELECTOR
Wilger Tools ***** 8 &

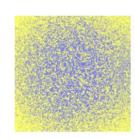
€ Everyone

This app is compatible with all of your devices.

Installed

Calibrate My Sprayer

Clemson University Tools

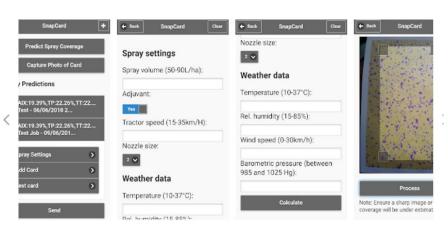

***** 33 .

€ Everyone

1 This app is compatible with all of your devices.

Installed

SnapCard


Department of Agriculture and Food WA Tools

**** 30 .

€ Everyone

1 This app is compatible with all of your devices.

Installed

