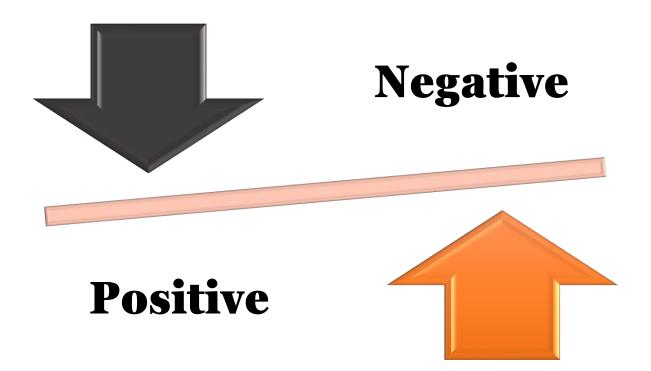
UF IFAS Extension UNIVERSITY of FLORIDA

Nutritional Benefits of Forage Legumes in Livestock Systems

Kalyn Waters – UF/IFAS Extension Holmes County

Grazing Systems


Harvested/ Supplement

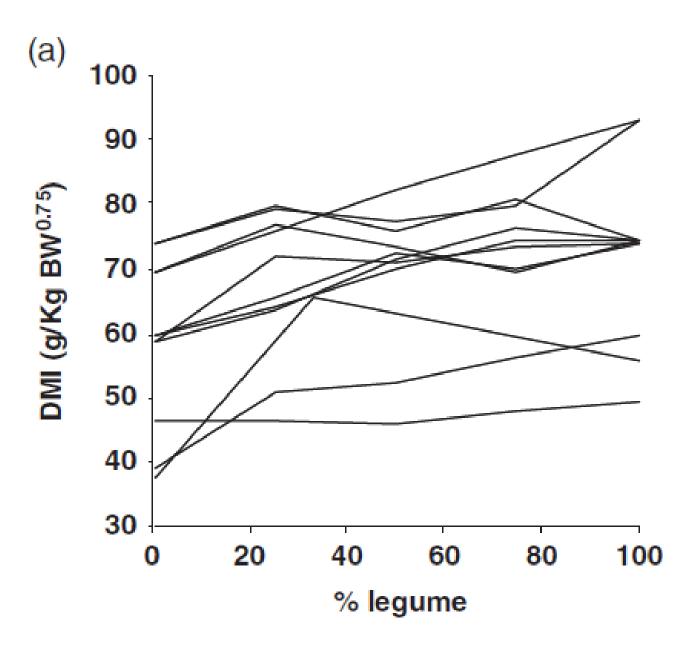
All Feedstuffs are NOT Created Equal

Associative effects between forages on feed intake and digestion in ruminants

V. Niderkorn- and R. Baumont

Forage Digestion

- Higher pH
- Cellulolytic population thrives
- Increased plant matter digestion


Concentrate Digestion

- Easily fermentable carbohydrates
- Lower ruminal pH
- Decreased cellulolytic activity

At 25% to **50%** inclusion in diet saw 6% to 7% increase in DMI

Animal responses to percentage of legume with DMI. Data were compiled from studies of Moseley and Jones, 1979; Hunt et al., 1985; Reid et al., 1987; Bowman and Asplund, 1988a and Bhatti et al., 2008.

- Saw an increase in DMI with Legume inclusion
 - Saw increase in animal performance (milk, ADG)
- Associative Effects between low-quality forages and legumes
 - Supplementations with legumes increase feed-value of poor forage
 - Provides rumen microbes needed N (ammonia) to thrive
 - Increased rate of passage = Increased DMI

	Daily	Dry Matter	TD	N	Crude	Protein
Weight	Gain	Intake	Lbs	%	Lbs	%
500	1.0	12.2	7.2	59%	1.19	9.8%
500	1.5	12.6	8.1	64%	1.41	11.2%
500	2.0	12.7	8.8	69%	1.63	12.8%
700	1.0	15.8	9.3	59%	1.42	9.0%
700	1.5	16.2	10.4	64%	1.64	10.1%
700	2.0	16.3	11.2	69%	1.85	11.4%
* Nutrient Req	uirements for	Beef Cattle, NRC	2 1984			

Table: Daily TDN and protein requirements for heifers.

Effects of feeding perennial peanut hay on growth, development, attainment of puberty, and fertility in beef replacement heifers. K.M. Waters, T.E. Black, V.R.G. Mercadante, G. H.L Marquezini, N. DiLorenzo, R.O. Myers, A.T. Adesogan and G.C. Lamb.

Phase 1: Devolvement Phase (D0- 140) with targeted gain of 1 to 1.5 lbs/day

Phase 2: Breeding Phase (D 141-224)

Treatments- Similar caloric intakes

PPH – Perennial Peanut Hay (6 lbs/hd)

CSBM – 80% Corn & 20% Soybean Meal (44%CP)

CON- No supplement

*All cattle received free-choice assess to quality bermudagrass hay (BGH)

Forage Digestion

- Higher pH
- Cellulolytic population thrives
- Increased plant matter digestion

Concentrate Digestion

- Easily fermentable carbohydrates
- Lower ruminal pH
- Decreased cellulolytic activity

Performance data of heifers developed on three different nutritional programs.

	Control	CGSM	PPH
ADG on treatment, lbs	0.39	1.05	1.01
Age at Puberty, d	446	423	439
WT at Puberty, lbs	640	695	712
D on Treatment to Puberty, d	183	163	175
Pregnancy Rate, %	65%	78%	88%

Total DMI Across Treatments

- CON heifers (only Hay) = Least Total DMI (TDN + CP)
- PPH heifers = Greatest Total DMI
 - Greatest % BW Consumed
 - Positive Associated Effect of Legume Inclusion
- Efficient use of crude protein leading to nutrient synchrony
 - Blood Urea Nitrogen levels (BUN)

How do we MAXIMIZE the nutritional VALUE of LEGUNES in a production system?

Creep Grazing

Nutrient Requirements by Production Phase

	Mat	ure Cow	1 st Calf Heifers		
	TDN	СР	TDN	СР	
Calving	59.2% (14)	10.5% (2.4)	60.6% (13)	10.5% (2.2)	
Breeding	55.1%	8.7%	57.0%	8.9%	
	(13)	(2.1)	(12)	(1.9)	
Dry/Bred	47.4%	6.6%	50.9%	7.3%	
	(11)	(1.6)	(11)	(1.5)	
Heavy	54.6%	8.6%	58.3%	9.0%	
Bred	(13)	(2.1)	(12)	(1.9)	

• On a dry matter basis

- Based on dry matter intake of 2.0% of body weight
- 1200 lbs mature cows and 1050 1st calf heifers (lbs required)

Take to the Field

- Increase value of all forages in diet
- Inclusion results in increase performance
- Viable option to meeting nutrient requirement for all stages of production
- Fertilizer Cost is SUPER high this year...

A fertile soil alone does not carry agriculture to perfection. -E. H. DERBY

R