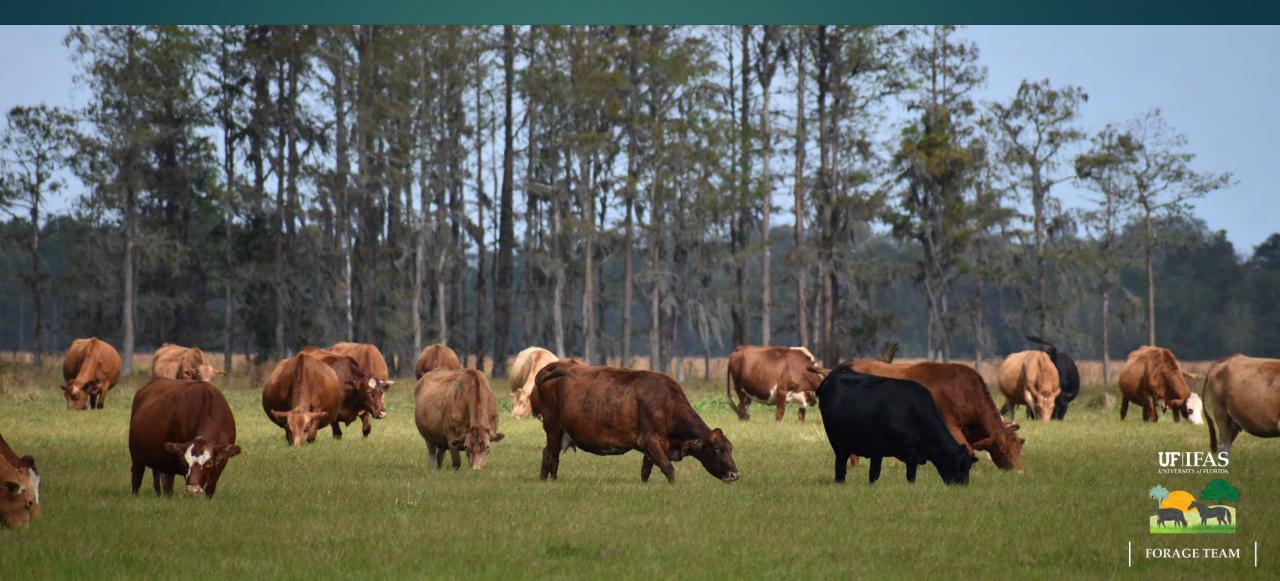




# Forage legumes: new opportunities for pollinators and wildlife

MARCELO WALLAU ASSISTANT PROFESSOR – UF AGRONOMY FORAGE EXTENSION SPECIALIST


Virtual Forage Legume Conference, May 6<sup>th</sup> 2021



# The benefits of diversity

#### HOW TO GO FROM...

### ... the traditional enterprises...



#### ... through improved pastures...



#### ... into new opportunities?

in the second definition of the second state o







## The role of legumes for whitetailed deer



### Dietary preferences

|              |                   | Type of Diet (%) |         |        |  |  |
|--------------|-------------------|------------------|---------|--------|--|--|
|              | Animal Species    | Grasses          | Legumes | Browse |  |  |
|              | Cattle            | 65-75            | 20-30   | 5-10   |  |  |
| Grazers      | Horses            | 70-80            | 15-25   | 0-5    |  |  |
|              | Sheep             | 45-55            | 30-40   | 10-20  |  |  |
| Intermediate | Goats             | 20-30            | 10-30   | 30-50  |  |  |
| Browsers     | White-tailed deer | 30-60            | 40-50   | 10-30  |  |  |



Slide: Dennis Hancock - UGA

### Nutrient-dense forages

- Small ruminants = small size = High requirements in relation to body weight
- Rumen size is small roughage (low nutritive value) fills the rumen and limits intake
- High turn-over rate and high feeding rithm
- An average adult white-tailed deer requires 4-8 pounds of forage dry matter per day



#### Importance of nutrition

- Determinant of performance and reproduction
  - and antlers
- Foundation of good health
  - Animals on high plane of nutrition are more resistant to many diseases
  - Nutritional problems are second only to respiratory problems in frequency of occurrence
  - Penned deer frequently raised on concentrate physiological problems because lack of fiber



### Nutrient requirements by category

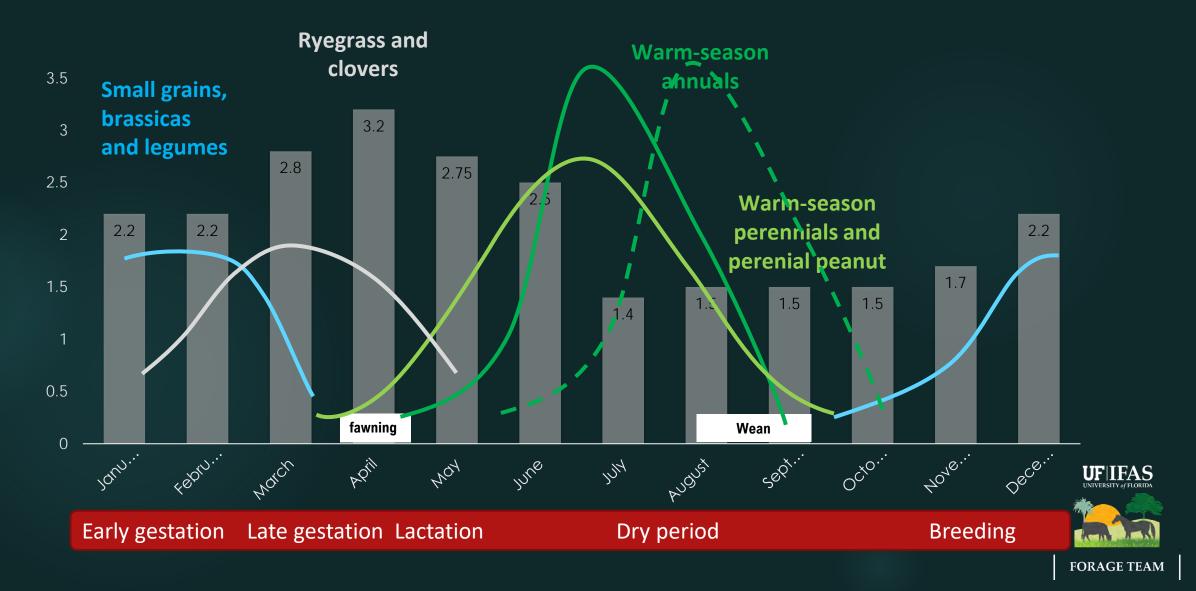
| Age            | Activity           | Protein level |  |  |
|----------------|--------------------|---------------|--|--|
| Fawn           | Average growth     | 14 to 18 %    |  |  |
| Fawn           | Excellent growth   | 16 to 20 %    |  |  |
| Yearling       | Maintenance        | 11 %          |  |  |
| Adult          | Maintenance        | 6 to 10 %     |  |  |
| Adult (female) | Late pregnancy     | 11 to 15 %    |  |  |
| Adult (female) | Lactation          | 14 to 22 %    |  |  |
| Adult (male)   | Antler development | 15 to 16 %    |  |  |

03/20/2018

ž

45°F

IJ.


Pierce et al - University of Missouri

CAMERA1

06:43PM

FO

#### Energy requirements of does (176 lbs, lbs TDN/d) Spring (April) fawning



#### Nutritive value

| Species            | Crude protein | Digestibility |
|--------------------|---------------|---------------|
| Perennial Peanut   | 14 - 21       | 64 - 74       |
| Chicory            | 8 - 15        | 67            |
| Turnips            | 12 - 18       | 65            |
| Annual ryegrass    | 12 - 18       | 65 - 70       |
| Oat                | 12 - 18       | 65 - 70       |
| Clovers            | 15 - 22       | 65 - 75       |
| Sunn hemp (leaves) | 25 - 30       | >80           |
| Sunn hemp (total)  | 14 - 20       | 55 - 60       |



Sunn hemp Cowpeas Pearl millet Velvet beans Buckwheat

#### Summer



# Feed and habitat – grazing behavior and stress

#### Sunn Hemp and condensed tannins

UF IFAS

### Many other species


- Alyce clover
- Aeschynomene
- Hairy indigo
- Forage soybeans
- Desmodium
- o Lab Lab





Flickr - Scamperdale





#### Perennial peanut Hay and permanent pasture on preserves





# What about pollinators?

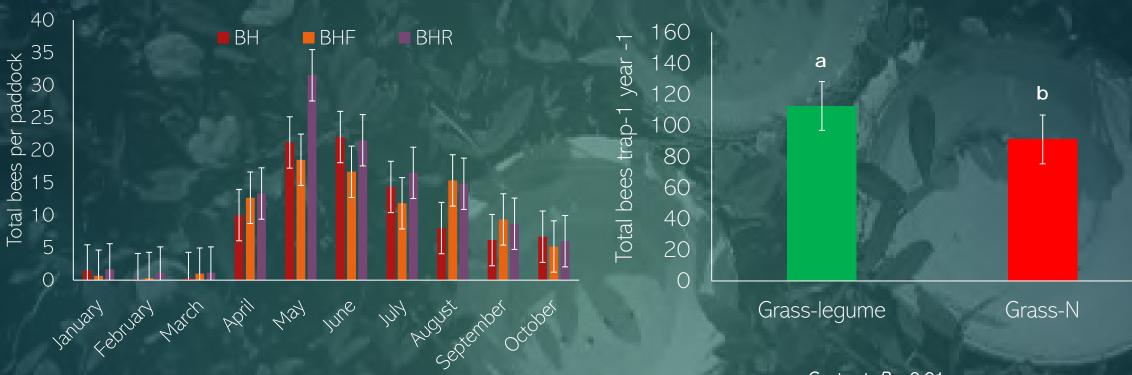
VALUE OF POLLINATORS GOES BEYOND HONEY PRODUCTION >100 crops depend on insect pollination, \$18 to \$27 billion in the United States

Bumblebee on Partridge pea by Jaret Daniels



# **BEES OF FLORIDA**

James R. Weaver, Shiala M. Naranjo, Emily Noordyke, Rachel E. Mallinger


Did you know there are over 320 species of bees in Florida and over 4,000 in the United States? Wild bees vary widely in behavior, color, size, and shape. This is an abridged introductory guide to some common bee groups and species you may encounter in Florida.



https://edis.ifas.ufl.edu/pdf%5CIN%5CIN128500.pdf

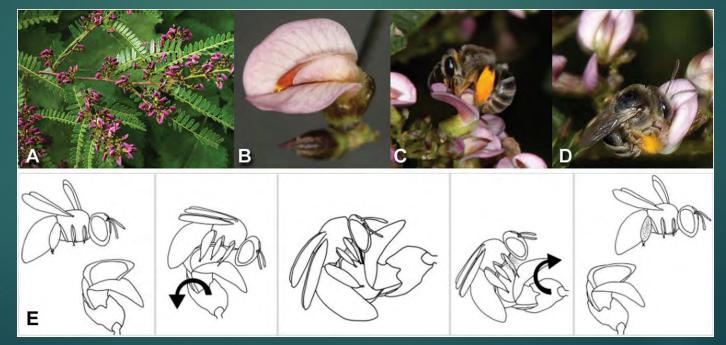


#### Garcia, 2019 – improving pastures for cattle and for bees!



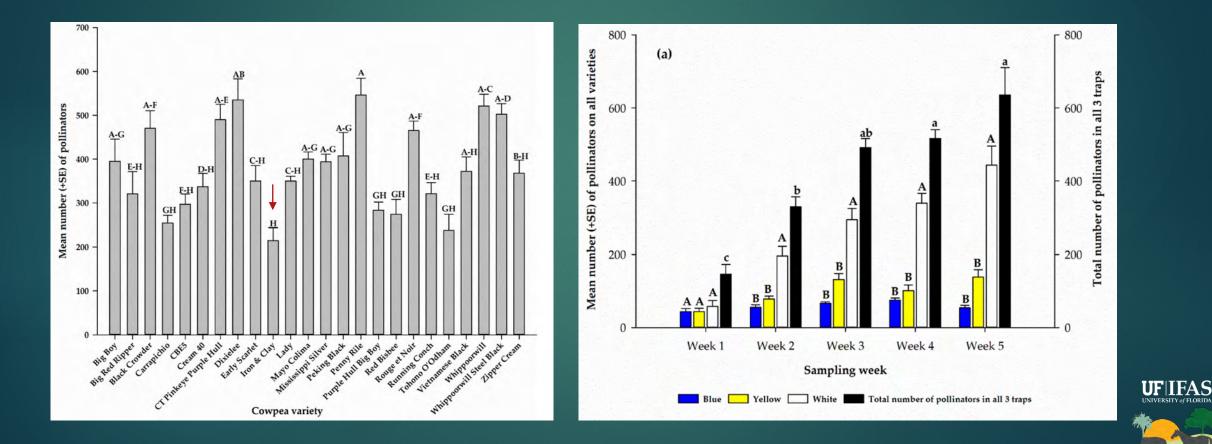
Contrast, P = 0.01<sup>a,b</sup> Means differ, P < 0.05

Small bees foraging on short radius especially during summer Flower diversity and different phenology favored presence of bees UF IFAS




#### Floral resources of common leguemes

| Common Name     | Scientific Name      | Mean Volume of<br>Pollen Per Flower<br>(µL) | Mean Mass of Nectar<br>Sugar per flower<br>(µg/day) | Mean Nectar Volume<br>per 100 Florets<br>(µL/day) | Honeybee Value     | Native Bee Value | Provides<br>Nectar? | Provides<br>Pollen? | SE Blooming<br>period |
|-----------------|----------------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------|------------------|---------------------|---------------------|-----------------------|
| Red Clover      | Trifolia pratense    | 0.020 (1)                                   | 48.366 (1)                                          |                                                   | Questionable (5)   |                  | yes (4)             | yes (4)             | Mar-May               |
| Crimson Clover  | Trifolium incarnatum |                                             |                                                     |                                                   | High (5)           |                  | yes (4)             | yes (4)             | Feb-May               |
| White Clover    | Trifolia repens      | 0.028 (1)                                   | 12.135 (1)                                          |                                                   | High (3)           | High (3)         | yes (7)             | yes (7)             | April-May             |
| Alfalfa         | Medicago sativa      |                                             |                                                     | 67.73 (2)                                         | High (3)           | High (3)         | yes (4)             | yes (4)             |                       |
| Medic           | Meidicago spp.       |                                             |                                                     |                                                   | Low (3)            | Low (3)          |                     |                     |                       |
| Sunn Hemp       | Crotalaria juncea    |                                             |                                                     |                                                   | Moderate (3)       | High (3)         |                     |                     | Summer-Fall           |
| Vetch           | Vicia spp.           |                                             |                                                     |                                                   | Moderate (3)       | High (3)         |                     |                     | Feb-May               |
| Hairy Vetch     | Vicia villosa        |                                             |                                                     |                                                   |                    | 0 ( )            | yes (6)             | yes (6)             | Feb-May               |
|                 |                      |                                             |                                                     |                                                   | Moderate (5); High |                  | 5 ( )               | 5                   |                       |
| Cowpea          | Vigna unguiculata    |                                             |                                                     |                                                   | (11)               | Hight (11)       | yes (4)             | yes (4)             | Summer-Fall           |
| Velvet Bean     | Mucuna pruriens      |                                             |                                                     |                                                   |                    | 0 . ,            | 5 ( )               | <u> </u>            | Summer-Fall           |
| Aeschynomene    | Aeschynomene spp.    |                                             |                                                     |                                                   | Moderate (10)      | Moderate (10)    |                     |                     | Summer-Fall           |
| Perennial peanu | t Arachis glabrata   |                                             |                                                     |                                                   |                    | Moderate (9)     |                     |                     | April-October         |
| Soybean         | Glycine max          | 0.022 - 0.127 (9)                           | 16 - 134 (9)                                        |                                                   | moderate (9)       | ( )              | yes (9)             | poor (9)            | Jun-Aug               |


#### Not all flowers attract all bees?

- Nectar and pollen production
- Flower morphology and timing of opening bees vary in size and tongue length
- Need for cross pollination or not specific pollinators
- Length of flowering period, flower abundance



Specialized pollinators – Aeschynomene amorphoides (Carleial et al., 2015)

### Differences for pollinator visits in cowpea varieties and timing of flowering



Dingah et al., 2021

### Influence of grazing management





#### Invasiveness potential





UF IFAS



### I can't ever get it right! LESSONS FROM DR. Q'S PRESENTATION ON ESTABLISHING LEGUMES



# Key points for designing forage plan for pollinators and wildlife

- Target species (use)
- What grows in region/soil
  - Adapted varieties
- Diversity
  - Flowering capacity/length/timing
  - Forage production

#### Pasture Mix South

| LOUPINI | Variety                        | Origin |
|---------|--------------------------------|--------|
| 30%     | Pensacola Bahia (coated)       | FL     |
| 20%     | BT Millet                      | FL     |
| 15%     | Perennial Ryegrass             | OR     |
| 15%     | Andes Pasture Ryegrass         | OR     |
| 10%     | Kentucky 32 Tall Fescue        | OR     |
| 5%      | Wrangler Bermuda               | OK     |
| 5%      | Crimson Clover Clover (coated) | OR     |

Purity: 90% Inert Matter: 5.86% Other Crop: 4% Weed Seed: 0.14% Noxious Weed: None Found Germination: 83% Dormant 6%; Total Germination: 89% Test Date: 1/2019 Net. Weight: 251 bs

Don't just buy the nice buck on the label



#### Check variety recommendations

UF IFAS Extension

askitas

What can we help you with?



What can we help you with?

#### 2020 COOL-SEASON FORAGE RECOMMENDATIONS FOR FLO

A. R. Blount, M. Wallau, E. Rios, J. M. B. Vendramini, J. C. B. Dubeu; H. Quesenberry<sup>2</sup>

#### INTRODUCTION

Perennial warm-season pasture grasses used in Florida become

days, cooler temperatures, and frosts. Many livestock producers may choose to establish cool-season annual pasture species to supplement their forage production. These plants are usually higher in total digestible nutrients (TDN) and crude protein (CP) than summer perennial grasses, translating into greater animal performance (Dubeux et al. 2016). Planting and growing these forage crops can involve considerable expense

#### https://edis.ifas.ufl.edu/publication/AG139

DOWNLOAD PDF

PUBLICATION #SS-AGR-28 Date: 2019-11-14 Blount, Ann R. Soffes Wallau, Marcelo Osorio Ober, Holly K Rios, Esteban Vendramini, Joao Mauricio



GO

FORAGE TEAM



#### FORAGE RECOMMENDATIONS FOR WILDLIFE FOOD PLOTS IN NORTH FLORIDA<sup>1</sup>

A. R. Blount, M. Wallau, H. K. Ober, E. Rios, J. M. B. Vendramini, J. C. B. Dubeux, Md. A. Babar, C. L. Mackowiak, and K. H. Ouesenberry<sup>2</sup>

Nationally, there is great interest in wildlife forages. Florida's light and sandy soils, hot and humid summers, and seasonal droughts pose unique challenges for successful food plot plantings. We recommend using adapted varieties developed for Florida's particular growing conditions. We also suggest the use of forage blends to increase the plot's longevity and stability and to supply variety to suit multiple wildlife components. It is important to perform soil testing and apply fertilizer and/or lime based on the soil test report. Information on soil testing is available on EDIS at https://edis.ifas.ufl.edu/topic\_soil\_testing.

# Good soil prep, weed control, liming and fertilization

The start of any good pasture...





### Establishment practices

FORAGE PLANTING AND ESTABLISHMENT METHODS ON PREPARED SEEDBED



https://edis.ifas.ufl.edu/publication/ag107

#### Give conditions for plants to succeed



#### Building exclusions for deer





#### Lots of new research coming up - keep an eye on our channels

UFForageTeam@uf.forages/

forages@ifas.ufl.edu