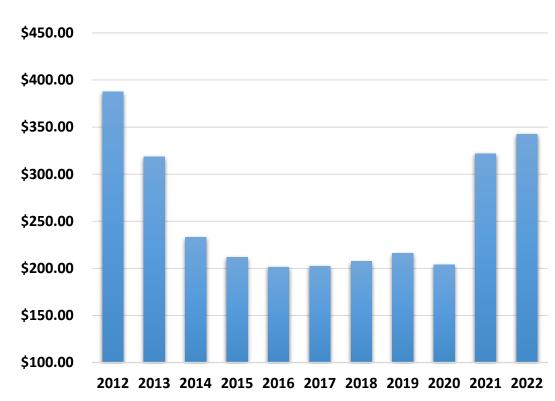


Managing supplemental feed costs

Dr. Nicolas DiLorenzo

University of Florida-NFREC


February 9, 2022

The most important message today: T.A.N.S.T.A.A.F.L.

The situation today

Corn \$/ton

UF IFAS UNIVERSITY of FLORIDA

Will cover 3 main supplementation scenarios:

- **1.** Dry/lactating cow
- 2. Replacement heifer
- **3. Backgrounding steer**
 - Why?
 - Opportunity in North FL?

Key word in this presentation is <u>supplemental</u> feed costs How much are we providing in the <u>basal</u> diet?

Testing, testing, testing

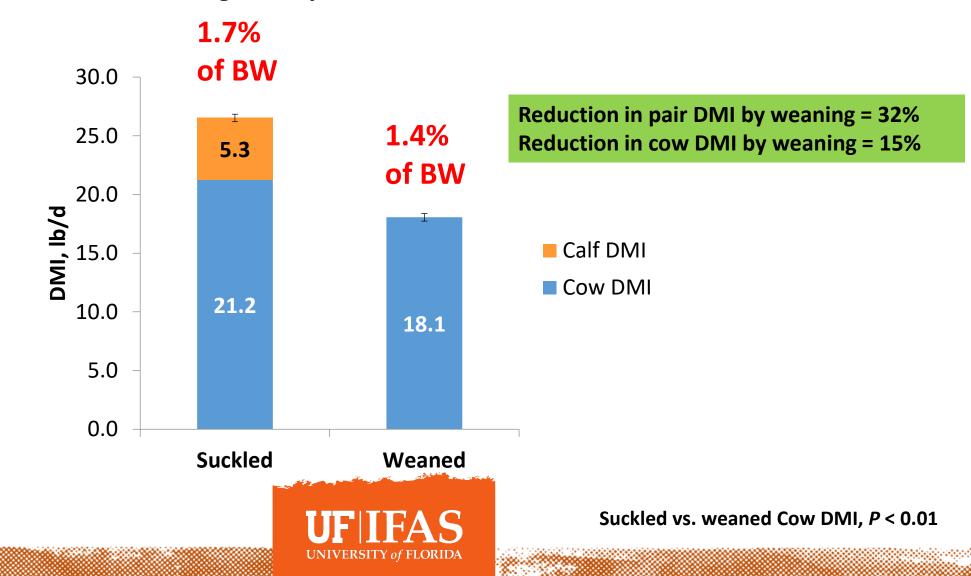
Tools to help develop supplemental programs The UF Hay Balancer

UF Hay Balancer UNIVERSITY of FLORIDA Summary of diet balance and costs 6 Shortage/surplus of TDN from hay (lbs/hd/d) = -1.86 Feed # lookup Feed number Shortage/surplus of CP from hay (lbs/hd/d) = 0.20 Feed name = Corn gluten feed, pellets TDN supplied **CP** supplied Total feed Feed Lb/cow/day to Daily cost For a feed (as fed) (lb/cow/d) (lb/cow/d) (S/hd/d)number Feed name eeded (lbs) total of: day(s) 22.67 11.22 2.04 0 Free choice hav intake 1.13 cow(s) 0.00 0.00 0 2 Corn gluten feed, pellets 0.00 0 1.61 12 3 Soybean hulls, pellets 3.00 0.31 0.3 270 Average cow weight: 13 1200 lbs 14 15 Type of hay fed: 16 Bahiagrass 17 55 % TDN 18 10 % CP 19 Toal supplemental feed = 3.00 lb/cow/d 20 21 Shortage/surplus of TDN in balanced diet (lbs/hd/d) Need more TDN -0.25 22 Shortage/surplus of CP in balanced diet (lbs/hd/d) = 0.51 23 Total daily feed cost (supplement only) = 0.30 \$ per cow/day 24 25 Total daily feed cost (hay plus supplement) = \$ per cow/day 26 .43 27 28 Disclaimer: Balancing calculations do not take into account any changes in hay intake as a result of supplementation 29 Questions or feedback: ndilorenzo@ufl.edu 30 31 Go to Home Screen 32 33

More info:

https://nfrec.ifas.ufl.edu/beef-and-forage/

Download the UF Hay balancer here:


https://nfrec.ifas.ufl.edu/media/nfrecifa sufledu/docs/excel/The-UF-Hay-Balancer_v1.1.xlsm

34

How much hay does a cow eat?

T85 bermudagrass hay fed over 56 d at the NFREC-FEF

What regulates intake in cattle?

Vs.

Gut fill vs. energy concentration

The importance of roughage in supplementation

Gut fill and minimal supplementation: only way to manage high costs without sacrificing productivity

What are the options for roughage?

Baled gin trash

Loose gin trash

Mullenix, Koebernick, and Jacobs. 2021. Alabama Cooperative Extension System

https://www.aces.edu/blog/topics/beef/cotton-byproductbeef-feeding-recommendations-have-they-changed/

How about conserved forages?

Stockpiled or ensiled limpograss Ryegrass silage

Take Home Message # 1 – Cow/calf

Without sufficient roughage for gut fill, supplementation can turn into a very expensive enterprise.

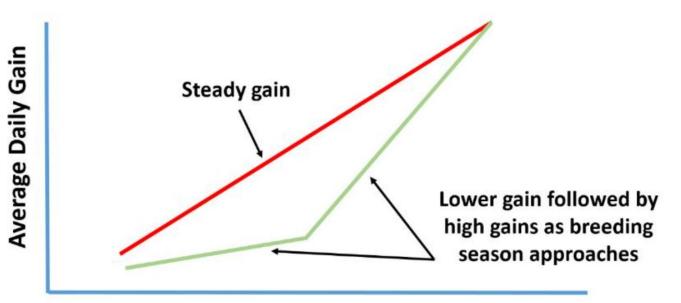
Plan ahead!

Heifer development

Expectations of a heifer

- Ideally, in most production systems, become pregnant in time to calve at 2 years of age
- Calve without assistance
- Rebreed as a first calf heifer
- Lifetime production (Lesmeister et al., 1973; Byerly et al., 1987)
 - Become pregnant early in first breeding season
 - Continue to do so over lifetime
 - Maximize lifetime production of cow
- Limiting factor: attainment of puberty

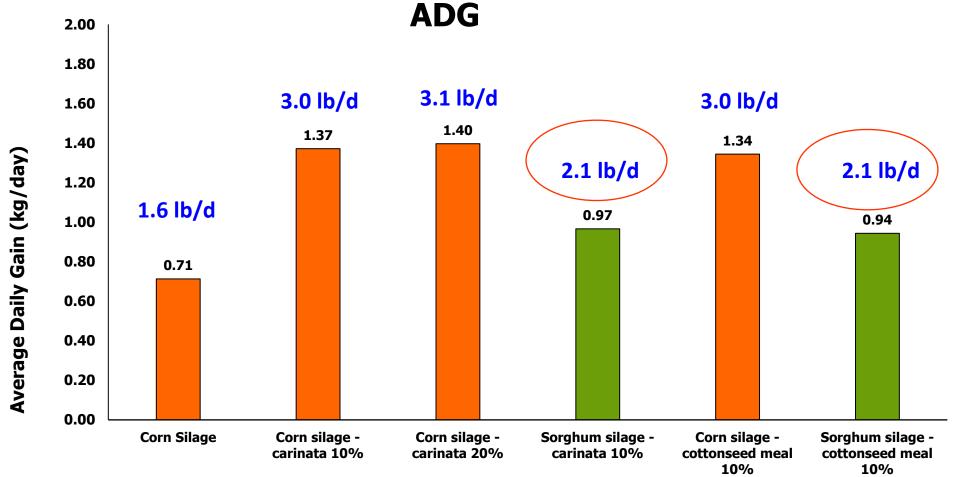
Ideal rate of gain for heifers...


Too much or too little?

What is an optimal gain for heifer development?

Feeding strategy

Time


Figure 3. Conceptual model of two different heifer development programs.

Credit: Freetly, Ferrell, and Jenkins (2001)

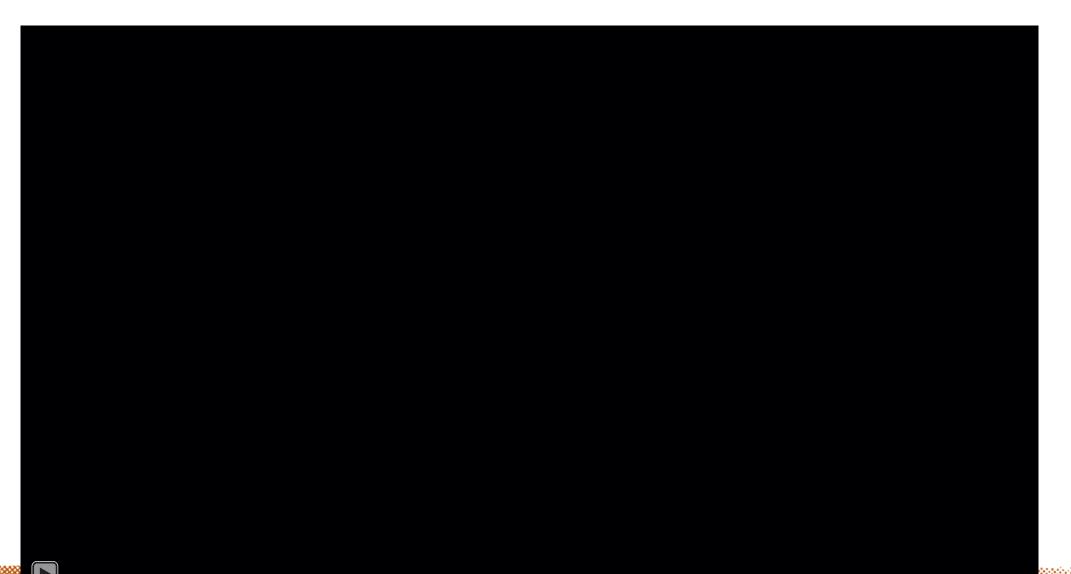
https://edis.ifas.ufl.edu/pdf/AG/AG42400.pdf

Silage-based diets for heifer development at NFREC

Treatments

THE POTENTIAL OF SILAGES IN BACKGROUNDING DIETS Growth performance in heifers (743 lb of initial BW) fed for 56 days

https://www.dilorenzonutritionlab.com/


	Sorghum silage + 10% cottonseed meal	Sorghum silage + 10% <u>carinata</u> meal	Corn silage + 10% cottonseed meal	Corn silage + 10% carinata meal	Corn silage only
ADG, lb/d	2.07	2.13	2.97	3.02	1.57
FTG, Ib of DM /Ib of BW	10.2	8.6	7.2	6.8	11.3
DMI, % of BW	2.58%	2.27%	2.50%	2.44%	2.24%
Total diet cost ¹ , \$/ton of DM	\$141	\$139	\$152	\$150	\$120
FCOG ² , \$/lb	\$0.72	\$0.60	\$0.55	\$0.51	\$0.68
Diet ³ NEm, Mcal/lb of DM	0.68	0.75	0.81	0.83	0.67
Diet ³ NEg, Mcal/lb of DM	0.40	0.47	0.53	0.54	0.40

¹Calculated using the following prices (all in \$/ton as fed, using 35% DM for silages): corn silage = \$42/ton, sorghum silage = \$38/ton, cottonseed meal = \$320/ton, carinata meal = \$300/ton

² FCOG = Feed cost of gain. Represents the feed cost for every lb of body weight gained.

³ Calculated from performance.

Ideas to cut on feeding labor costs...

Self-feeding system

Replacement heifers consuming corn silage by self-feeding at the NFREC

- A protein supplement should be offered separately
- It reduces labor and machinery use

Photo: Nicolas DiLorenzo

Source: https://www.comprerural.com/conheca-o-sistema-de-autoconsumo-para-gado-de-corte/

The effect of protein supplementation on hay-based diets

Summary of trials at NFREC using growing cattle fed bahiagrass hay free choice

and supplemented or not with protein

Materials and Methods

- 64 Bos taurus and Bos indicus influenced growing animals
 - 56 heifers 249 ± 26 kg of BW
 - 8 steers 249 ± 20 kg of BW
- 16 dormant bahiagrass pastures (1.34 ha each)
- 2 locations at the UF-NFREC Beef Unit:

R-pens (*n* = 8)

South Circle (*n* = 8)

Two experiments: one <u>with</u> and one <u>without</u> protein supplementation (hay only)

Without protein supplementation

Experiment 1: Animals and design

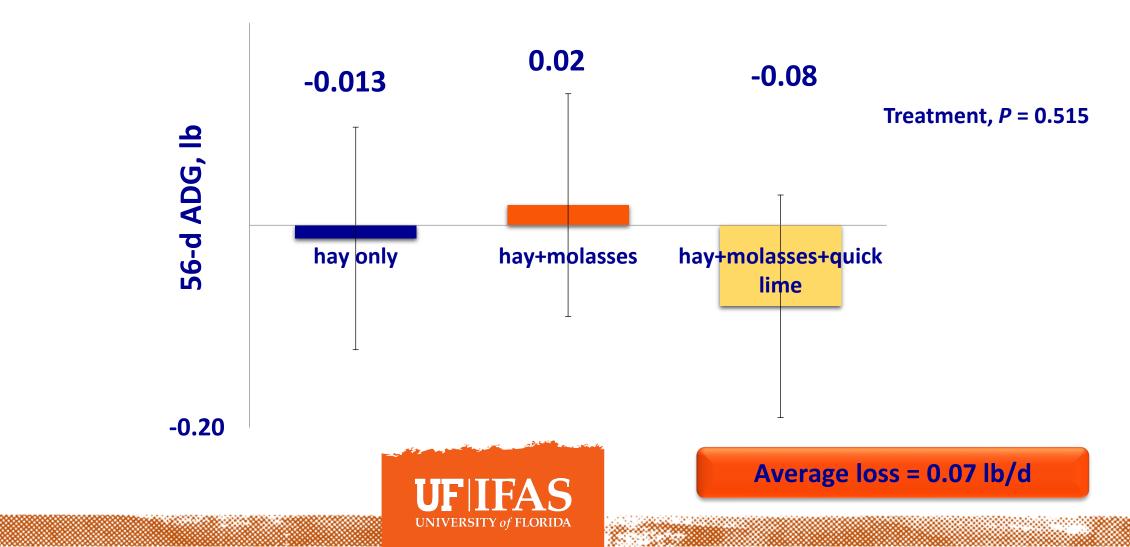
- 96 Bos taurus and Bos indicus growing cattle
- 59 heifers 551 ± 64 lb of BW
- 37 steers 564 ± 99 lb of BW
- Stratified by sex, breed, and BW
- Blocked by initial BW
- 24 dormant bahiagrass pastures
 (3.3 acres each; 4 animals/pasture)

With protein supplementation

Experiment 2: Animals and design

- 64 *Bos taurus* and *Bos indicus* growing cattle
- 56 heifers 549 ± 57 lb of BW
- 8 steers 549 ± 44 lb of BW
- Stratified by sex, breed, and BW
- Blocked by initial BW
- 16 dormant bahiagrass pastures (3.3 acres each; 4 animals/pasture)

Materials and Methods Exp. 1 (hay only)



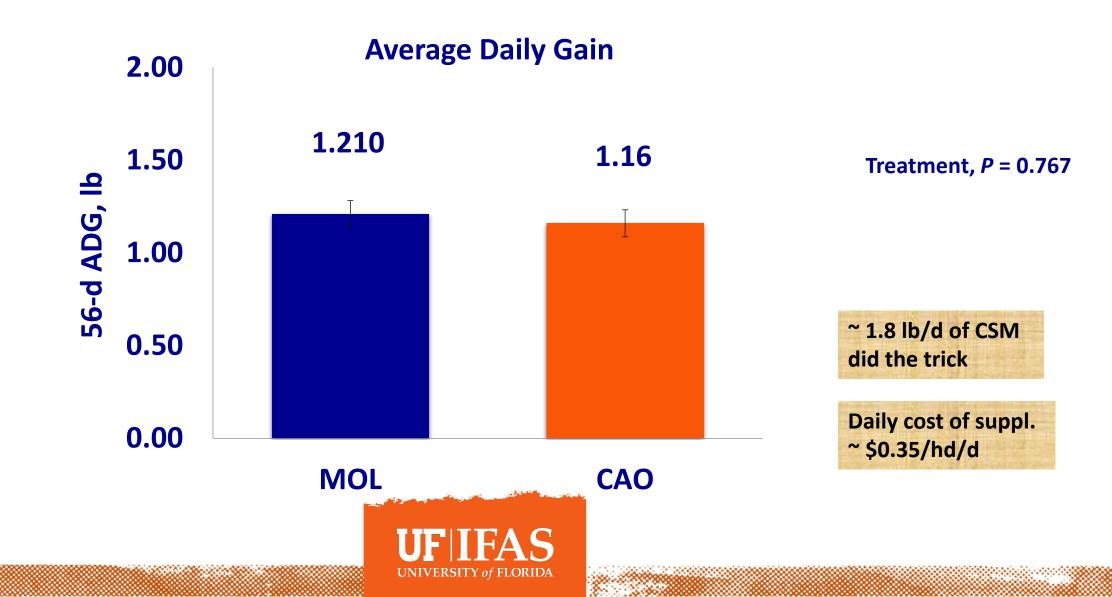
26

Results Exp. 1: ADG with hay without protein suppl.

Exp. 2: including cottonseed meal

• Pastures were stratified by location and randomly assigned to 1 of 2 treatments:

Bahiagrass hay treated with 10% molasses (DM basis) + water (to 35% DM)



Bahiagrass hay treated with 5% CaO (DM basis) + 10% molasses (DM basis) + water (to 35% DM)

- n = 8 pastures/treatment
- 56 d period
- Cottonseed meal: 0.3% BW/d

Results Exp. 2: with cottonseed meal at 0.3% of BW

Effect of protein supplementation in growing heifers

UF IFAS UNIVERSITY of FLORIDA

Take Home Message # 2 – Heifer development

In terms of supplementation, protein in growing cattle really matters. Not a good idea to cut corners, particularly when developing heifers.

As little as 2 lb/hd/d of cottonseed meal can do the trick!

Feedstuffs to consider in this region

- Corn and soybeans byproducts
- Silage (corn, sorghum, cool and warm season grasses)
- Liquid feeds with added urea
- Citrus pulp pellets
- Cotton byproducts
- DDGS
- Locally available commercial pellets, bakery waste, etc.

Some local examples of formulated diets Backgrounding (NFREC)

- Backgrounding diet of 90% sorghum silage and 10% DDGS (DM basis) fed to 720 lb heifers
 - Free choice (20 lb of DMI) ⇒ ADG = 1.5 lb/d
- Backgrounding diet of 63% citrus pulp, 21% gin trash, 10% DDGS, 6% suppl. fed to 720 lb heifers
 - Free choice (23 lb of DMI) ⇒ ADG = 2.6 lb/d
- Backgrounding diet of 42% corn gluten feed, 35% cottonseed hulls, 12% cracked corn, 5% bermudagrass hay, 6% suppl. Fed to 740 lb heifers
 - Free choice (30 lb of DMI) ⇒ ADG = 3.2 lb/d

Some local examples of formulated diets Backgrounding (NFREC) continued

- Heifer development diet (2021): 90% sorghum silage, 10% cottonseed meal, 743 lb iBW
 - Free choice (21 lb of DMI) ⇒ ADG = 2.1 lb/d
- Heifer development diet (2021): 90% corn silage, 10% cottonseed meal, 743 lb iBW
 - Free choice (21 lb of DMI) ⇒ ADG = 2.97 lb/d
- Heifer development diet (thermotolerance): 35% corn gluten feed, 35% cottonseed hulls, 15% soy hulls, 10% bermudagrass hay, 5% supplement, Brangus heifers, 697 lb iBW
 - Free choice (29 lb of DMI) ⇒ ADG = 2.31 lb/d
- It is all about energy intake!!

Take Home Message # 3 - Backgrounding

Opportunities for backgrounding/stocking may exist to add value to FL calves. The key variable to watch for is Feed Cost of Gain (FCOG) in \$/lb of weight gained

Angusbeefbulletin.com

Conclusions

- Except at the NW Beef Conference...
 - ✓ There Is No Such Thing as Free Lunch
 - \checkmark Not an excuse to cut corners

- Always provide enough roughage before developing the supplemental program >>> gut fill is a must
- Shortening supplemental protein will impact ADG
 - ✓ Cattle prices are also climbing
- Opportunity to add values to calves in North Florida
 - ✓ Backgrounding with byproducts and grazing cover crops

Thanks!

https://www.dilorenzonutritionlab.com/

Troy Windham Chad Stephens Olivia Hill

fØ

