Cattle Herd Health Herd Nutrition Management

Kim Mullenix, Ph.D.

Extension Beef Specialist/Associate Professor

Department of Animal Sciences

Auburn University

2023 North Florida Beef Conference

Marianna, FL

Herd Health – A Systems Approach

A Mare

Annual Cow Production Cycle

Health and Dry Matter Intake Are Related

Ų	

Increasing Forage Quality = Increasing Intake Decreasing Forage Quality = Decreased Intake Potential Decreasing Intake = Greater Risk For Health Problems

Early to Mid Pregnancy

- Dry, pregnant cows (gestating)
- Up to ~60 days prior to calving
- Lower nutritional requirement
- Pregnancy check and cull list

Culling, Nutrition, and Herd Health

Feet and legs = harder to walk to feed trough in winter, move through mud, not willing to move as much as needed for grazing

Won't hold body condition = teeth, maybe this cow doesn't match production environment

Udder = hard for calf to latch; milk production fluctuation

Prior to Calving (~60 days)

- A time where body condition can be added more economically
- Warm-season forage systems will maintain body condition during this time; add supplement for greater gain potential

Calving

- Energy and protein needs increase to support lactation and reproductive repair
- Often coincides with decline in bahiagrass availability and dormancy
- Energy supplementation generally required

60 days Post Calving Energy Followed by Protein

Conditions During Fall 2022 Dry and "Early" Frost

Fiber Digestion by Rumen "Bugs"

Bermudagrass

Digested by Rumen Microorganisms

M = Mesohpyll V = Vascular bundles

Arrow = parenchymal bundle sheath

Forage Quality – Animal Intake

Hay Quality	Class of cattle	Dry matter capacity, % of BW
Low quality (less then 52% TDN, 8% CP)	Dry cows	1.5
	Lactating cows	2.0
Average quality (52 to 56% TDN, 9 - 12% CP)	Dry cows	2.0
	Lactating cows	2.3
High quality (> 56% TDN, 12% CP)	Dry cows	2.5
	Lactating cows	2.7
RN .		Cytone

Source: Rasby, 1996

LARAMA A&M & AURIRN UN

AUBU

AGRICULTURE

Forage Quality

Nitrate Nitrogen (NO ₃ -N), ppm	Nitrate Ion (NO ₃), ppm	Level of Risk
0 to 1,500	0 to 6,500	Generally safe
1,500 to 5,000	6,500 to 22,000	Limit to ½ of dry matter intake
5,000 +	22,000 +	Toxic – Use no more than 15% of total ration

*A sample that contained 1,000 ppm NO₃-N would contain 4,430 ppm NO₃ Nitrate-NO_{3 =} 4.4268 x Nitrate-N (mg/L)

Understanding Forage Quality = Better Supplementation Strategy

Supplementation Strategies and Rules of Thumb

- TDN to CP Ratio
 - Less than 8 adequate protein to match energy in the forage
 - Better quality hay when both TDN and CP percentages are high (i.e. 60% TDN and 12% CP)
 - If needed, supplemental energy
 - High ratio (greater than 8)
 - Indicate that there is a deficiency of protein relative to energy (i.e. TDN = 54% and CP = 6%)
 - Protein supplementation

Evaluating Supplement Types

- Energy, protein or both?
- How much do I need?
- Supply and consistency
- Is there a "cap" on how much I can use?
- Is the product designed to only deliver a certain amount?

Breeding

- Provide quality forage and supplement as needed
- Now isn't the time to make up losses
- Excessive protein and energy supplementation can negatively impact reproduction

Thin cows become pregnant later in the breeding season

*Time from calving to estrus

Dr. Bob Carson Auburn University College of Veterinary Medicine

Dealing with Cold, Wet Conditions

- Mud
- Increasing energy requirements
- Supplementation before and after cold snaps

Calf Health

Where does a newborn calf first get its immunity?

Passive vs. Active Immunity

Learned Behaviors

Dietary Requirements of Growing Calves

Weaning Methods

Nutrition Builds a Strong Foundation for Health

For more information, visit:

www.alabamabeefsystems.com

