Forage Fertility to Improve Herd

Nutrition...

...and not break the bank

Cheryl Mackowiak, Soil Fertility and Water Quality UF-IFAS, North Florida Research and Education Center, Quincy, FL

Fertilizer prices trending lower but remain historically high in 2023

Fertilizers Price Index

177.92 for Jan 2023

https://ycharts.com/indicators/fertilizers_index_world_bank

• Potash out of

Canada: Supply

chain improved

• Phosphate: ample

•Nitrogen trend is the

supplies in US.

big unknown!

Baseline Projections Index: U.S. Farm Production Expenses,

Source: Food & Agricultural Policy Research Institute Baseline Update Projections, Sep. 2022

Amanda Smith, Economist, UGA, 2023

2nd least expensive cost is to lime your soil IF your soil pH is below target pH (~ 5.5)

Hay production removes a lot of fertility!

Сгор	Yield Per Acre	N	P ₂ O ₅	K ₂ O	Ca	Mg	S
						—— lb/acre	
Bahia or Bermudagrass Pasture	200 lb. beef	f 6	5	1			
Bermudagrass Hay	8 tons	400	92	345	48	32	32

Charles Mitchell, Auburn

Soil Fertility

Physical

soil texture, structure and resilience

SOIL FERTILITY

Chemical

nutrient supply and cycling Biological organic matter, animals and micro-organisms

If you don't know where you are going, you might end up someplace else...

Yogi Berro

Organic Matter "Grows" More Forage

- Conserves soil moisture
- Holds plant nutrients
- Increases soil aggregation

The plant as a factory...

- Roots provide raw materials (water, nutrients, energy reserve).
- Leaves are the assembly line.

Good grazing management 24/7, & year-round!

Is there fat to trim from my fertilization costs?

- Grid sampling for variable rate application
- Ag, municipal, industry by-products
- Apply only what you require

"Be careful at work, dear. They'll be looking everywhere for ways to trim the fat."

Grid Size – Application Accuracy vs Cost (lime)

Field 1

- Average variable land
- More adequate pH zones
- Larger grids=overapply lime

Field 2

- Highly variable land
- Overall, more acid zones
- Larger grids=overapply lime

Field 3

- •Least variable land
- Generally high lime requirement
- Larger grids=overapply lime

Grid Size	Accuracy (%)	Cost (\$/ac)	Grid Size	Accuracy (%)	Cost (\$/ac)	Grid Size	Accuracy (%)	Cost (\$/ac)
1.0	90	20	1.0	87	43	1.0	95	34
2.5	85	14	2.5	66	35	2.5	93	30
5.0	75	15	5.0	51	31	5.0	87	32
7.5	66	20	7.5	46	33	7.5	62	30
10.0	34	17	10.0	45	41	10.0	30	39

If unsure, 2.5-acre grid size perhaps the best compromise...

Tables from Glen Harris

Application Cost = Soil sampling + soil analysis + cost of lime

Is there fat to trim from my fertilization costs?

- Grid sampling for variable rate application
- Ag, municipal, industry by-products
- Apply only what you require

"Be careful at work, dear. They'll be looking everywhere for ways to trim the fat."

Agricultural, Municipal and Industrial By-Products

Chicken Litter "Poultash" Gin Trash

Biosolids Symtrex Sus-Terra

FGD Gypsum Wood Ash Wallboard RecycLime

Conventional fertilizer alternatives?

- Biosolids (Class AA or Class B): contains everything but potassium (great source of micronutrients)
- Wood ash: Primarily as liming agent (~ 50% of Ag lime CCE); contains ample potassium and manganese (micronutrients)
- Soil biologicals and other supplements: Targeting corn and other row crops to help produce more with less fertilizer inputs. Often products are expensive (\$10 to \$30/acre). Must put pen to paper and you need more than testimonials. Would aim for at least 20% yield gain.

Is there fat to trim from my fertilization costs?

- Grid sampling for variable rate application
- Ag, municipal, industry by-products
- Apply only what you require

"Be careful at work, dear. They'll be looking everywhere for ways to trim the fat."

Timing: Daylength has a strong influence on warm-season forage yield!

Bermudagrass response to N sources (season total)

Treatment	Bermudagrass total yield					
	BC field	JP field				
	(kg	ha ⁻¹)				
CTL	6,615 c	8,170 b				
UCU	11,903 b	17,386 a				
ARB	12,454 ab	15,420 a				
ESN	15,795 a	16,447 a				
BIO	11,275 bc	13,273 a				
	040	044				
SE	812	811				
<i>p</i> value	0.0003	<0.0007				

CTL = control; UCU = uncoated urea; ARB = Arborite; ESN = polymer-coated; BIO = Class AA biosolids

Bahiagrass response to N sources (season total)

Treatment	Bahiagrass total yield					
	House field	Low field				
	(kg	ha ⁻¹)				
CTL	4,567 b	4,324 b				
UCU	8,578 a	10,097 a				
ARB	7,342 ab	10,721 a				
ESN	9,043 a	10,055 a				
BIO	9,205 a	8,536 a				
SE	763	535				
<i>p</i> value	0.0109	<0.0001				

Bahiagrass often yields less than productive bermudagrass varieties, (i.e., Tifton-85)

Results from a multi-year, on-farm, bahiagrass fertilizer depletion study

- Four Florida counties.
- Osceola county for 6 years and others for 3 years.
- Compared full fertilization (N, P, K) against same but used biosolids (class AA), versus minus N, minus K, and minus P treatments. A check (no fertilizer application was also included).

Bahiagrass long-term fertility trial

Osceola county plots after 3 years

Osceola county plots after 6 years

Bahiagrass fertility trial (roots)

Complete

Osceola County

Potassium deficiency in bahiagrass

- Leaf tip scorching is visually somewhat similar to cold damage (pale, frayed tips).
- Greater susceptibility to fungal diseases, such as Bipolaris leaf spot.

Gulf County

Nutrient uptake (removed by forage) in year 3 (Osceola County)

Nitrogen		kg N ha⁻¹	<u>N (lbs/a)</u>
Complete fertilizer	а	96	86
Class AA biosolids ^Y	ab	83	74
Minus P fertilizer	а	108	96
Minus K fertilizer	b	86	77
Minus N fertilizer	С	32	29
No fertilizer (check)	d	38	34

Phosphorus		kg P ha ⁻¹	<u>P₂O₅ (lbs/a)</u>
Complete fertilizer	ab	16.9	36
Class AA biosolids	а	19.7	42
Minus P fertilizer	С	11.8	24
Minus K fertilizer	bc	16.6	34
Minus N fertilizer	d	7.0	14
No fertilizer (check)	е	6.7	14

Potassium		kg K ha⁻¹	<u>K₂O (lbs/a</u>)
Complete fertilizer	а	95	102
Class AA biosolids	а	96	103
Minus P fertilizer	а	125	134
Minus K fertilizer	С	36	39
Minus N fertilizer	b	35	38
No fertilizer (check)	d	26	28

Nitrogen and management demo for late-season bahiagrass pastures

Treatment	Mature Grass	Mow Only	Mow + 30# N/A	Mow + 50# N/A	Mow + 80# N/A
Dry lbs/acre	1,460	840	1,560	2,180	2,250
Crude Protein (%)	4.8	6.6	8.0	10.1	10.4
Potential Use	Grazing with Significant CP Supplementation	Grazing with Limited CP Supplementation	Grazing for Dry Pregnant Cows	Grazing for Cows or Hay for Mature Cows	Grazing for Cows or Hay for Mature Cows Potential N Leaching
Yield and quality measure	d 6 weeks after treatm	ent in August 2018	Cost: \$38/ton	Cost: \$46/ton	Cost: \$71/ton

What is quality worth? Compare against supplementation

NFREC Beef & Forage Field Day (April 13th) (Marianna)

• Bahiagrass pasture

- Spring pasture N timing
- Overlay a legume mix on half the plots (Austrian winter pea, hairy vetch, crimson clover)
- Forage sampling continues into May
- Will discuss late, cool-season plantings and early fertilizer applications with associated costs

Legume	No legume	Legume	No legume	No legume	Legume	Legume	No legume
No N	No N	25 lbs/A Feb 4th	No N	50 lbs/A Apr 4th	25 lbs/A Feb 4th	50 lbs/A Apr 4th	50 lbs/A Mar 4th
25 lbs/A Feb 4th	25 lbs/A Feb 4th	50 lbs/A Feb 4th	50 lbs/A Mar 4th	25 lbs/A Feb 4th	50 lbs/A Mar 4th	50 lbs/A Mar 4th	50 lbs/A Feb 4th
50 lbs/A Feb 4th	50 lbs/A Feb 4th	50 lbs/A Apr 4th	50 lbs/A Feb 4th	No N	25 lbs/A Feb 4th	No N	50 lbs/A Apr 4th
50 lbs/A Mar 4th	50 lbs/A Mar 4th	50 lbs/A Mar 4th	50 lbs/A Apr 4th	50 lbs/A Mar 4th	No N	25 lbs/A Feb 4th	No N
50 lbs/A Apr 4th	50 lbs/A Apr 4th	No N	25 lbs/A Feb 4th	50 lbs/A Feb 4th	50 lbs/A Apr 4th	50 lbs/A Feb 4th	25 lbs/A Feb 4th
Block 1		Block	2	Block 3		Block 4	

Take home messages

Start with soil report and other basics. Have a

management plan and realistic expectations.

 Grid sampling (variable rate lime and fertilizer applications) might save you money, particularly

I if land is highly variable.

 Bahiagrass producers might be able to delay P inputs, lower K inputs (short-term!) and tweak N application timing.

Cheryl Mackowiak: echo13@ufl.edu