# Characterizing & Deploying Novel Disease-Resistant Peanut Cultivars in the Southeastern U.S.

Daniel Leonard, UF/IFAS NFREC - Ph.D. Student

#### The Problem: Late Leaf Spot (LLS) in Peanut

- Pathogen: Nothopassalora personata
- Economic impact: 6–8 fungicide sprays/season = \$100–\$150/acre
- Breeding for genetic resistance can reduce input costs and protect yields

#### **Project Objective**

Evaluate fungicide regimes for three LLS-resistant peanut lines to:

- Reduce fungicide frequency and cost
- Maintain high yields and quality
- Help growers adopt resistant cultivars efficiently

#### **Methods Summary**

- Location: UF/IFAS NFREC, Marianna, FL
- Design: RCBD with split plots (3 reps)
- Varieties: FloRun 'T61', UF14x054-8-6-1-1, UF-SSD-19, & susceptible (Tif-CB7)
- Fungicide: Chlorothalonil @ 0.75 or 1.5 pt/ac
- Applied at 14-, 21-, and 28-day intervals + control

#### **Key Findings**

- UF-SSD-19 showed superior resistance: lower AUDPC and higher yields across all treatments
- Significant potential for reduced fungicide use in resistant cultivars

## Variety x Treatment Interactions for AUDPC and Yield





Fungicide Response: No-Spray Control - FloRun 'T61' vs UF-SSD-19



# **Takeaways for Growers**

- Genotypic resistance to LLS can:
- Cut fungicide use (rate & frequency)
- Maintain or boost yield
- UF-SSD-19 is especially promising for Southeastern U.S. peanut systems

### **Future Research**

- Repeat trial in 2025
- Develop new resistant cultivars from top genotypes (F3 populations growing)
- Map resistance genes in UF-SSD-19