Source: Mississippi Crop Situation
Erick Larson, State Extension Specialist
Why did the Kernels near the Ear Tip not Fill?
Incomplete kernel set is something you can’t ignore when you start peeling back husks to evaluate your corn crop this time of year. Often times we wonder why those kernels near the ear tip didn’t fill out. Invariably, the next thought that comes to mind is “this crop didn’t have any stress.” However, the fact is if everything was favorable, then plants wouldn’t abort those kernels near the ear tip. Therefore, if we want to improve our yields, we need to investigate potential reasons why kernel set is less than desired, so we can potentially improve our management in the future.
Kernels near the ear tip are more prone to failure than lower on the ear for a couple of primary reasons. Silks responsible for receiving pollen emerge last from kernels near the ear tip. Thus, fertilization failure is more likely, because these silks may not emerge in time to be receptive to pollen. Severe drought stress is well known to delay silk development, often promoting this synchrony issue and resultant pollination failure. However, we commonly see plenty of unfilled ear tips in our irrigated and good dryland crop also. This is primarily due to kernels which abort, because the plant cannot support them all. I believe this is generally the far more important component of kernel tip fill.
Corn prioritizes its available energy first to developing kernels at the base of the ear. Kernel development is also extremely sensitive to current energy production (photosynthetic rate) during the first few weeks after pollination, because tiny kernels have very poor ability to draw stored energy from mature vegetation. Therefore, relatively modest issues may significantly reduce yield potential at this time. It is during the 18-20 days after pollination (until milk stage or R3) that kernel number is determined.
There are a long list of issues capable of reducing the photosynthetic rate necessary to feed developing kernels, but these are some of the most common:
Drought stress is a common factor known to reduce transpiration and photosynthesis.
Excessive irrigation or rainfall may saturate soil, depriving oxygen, stunting or halting physiological processes, damaging root systems, promoting nutrient loss, and can even escalate heat stress when temperatures are warm.
Photosynthesis requires light. Thus, lots of overcast days or shading from excessive plant population or leaf canopy can limit photosynthetic rate.
Nutrient deficiencies reduce growth or the vegetative “plant factory,” and restrict resources needed to optimize physiological processes. Poor growing conditions this spring may have limited nutrient uptake, hindered application timing and reduced plant use efficiency.
High night temperatures increase plant respiration rates and expend energy which could otherwise support kernel development. This year’s night temperatures have generally been mild, except for June 22-29, when they were well above normal.
Many of our fields this spring exhibited variable seedling emergence resulting from low temperatures and generally unfavorable conditions for growth. The plant growth disparity resulting from variable emergence puts late plants at a distinct competitive disadvantage for resources. Late plants will likely be spindly, have smaller ears and may even fail to successfully pollinate, because their development is not synchronized.
- October 2024 Weather Summary and Winter Outlook - November 8, 2024
- Friday Feature:Jerry Davis honored for Distinguished Service to Farm Bureau - November 8, 2024
- Minimizing Round Bale Hay Waste - November 1, 2024