Precision Feeding After a Challenging Hay Season

Precision Feeding After a Challenging Hay Season

Just like soil sampling before purchasing fertilizer, hay should be sampled and sent to a lab for evaluation before purchasing supplemental feeds. As Dr. Jennifer Tucker from UGA often says, “Don’t guess, forage test!” Credit: Doug Mayo, UF/IFAS

The summer of 2018 has been very challenging for hay production.  The combination of frequent rainfall, and heavy downpours have prevented timely harvest, and also diminished the quality of the hay produced.  The days are getting shorter, grass growth has slowed, so it is time to start planning for cool-season supplementation. Because of the rainy summer, many producers will have to feed at least some lower quality hay this year.  Since hay serves as the base for the winter feeding program on most operations, it will be even more critical this year to balance low quality hay with adequate supplemental feeds.  This conundrum has many producers asking, “What is the best way to do that?”

In the modern area of precision agriculture, many crop farms have implemented the technique of precision fertilization.  Using grid soil sampling, GPS maps can be generated with variable rate fertilization zones.  Once the maps are paired with high-tech application equipment that responds to the data, crop farmers can fertilize more efficiently than ever before.  While most livestock producers are familiar with high-tech genetic and breeding technologies, many farms are not utilizing the available technology for what I call “Precision Feeding.”  Whether you produce your own hay, or buy it from a local farm or supply dealer, you should have your hay tested for nutritional quality.  As Dr. Jennifer Tucker, UGA Beef Specialist,  often says, “Don’t guess.  Forage test!”  Once you know how good or bad your hay is, you can precisely determine the type and amount of supplement needed to balance the nutritional needs of the animals you are feeding.

Forage Sampling

So where do you begin this process of fine-tuning your winter nutrition program?  The first step is to sample each cutting or purchased lot of hay to determine the nutritional quality.  Contact your local county agent to get some help with thisA number of the agents in the Florida Panhandle have forage probes at their office, or can get one to use from a nearby county.  If you want to purchase your own equipment, there are a number of different companies that sell forage sampling probes.  The one I use, was ordered from Nasco and fits on the end of a 1/2″ cordless drill.  The combined cost of the forage probe ($130) and a heavy duty 1/2″ cordless drill is around $350.

Forage Sample Equipment

To send in a forage sample to a lab for analysis you need a 1/2″ cordless drill, forage probe, and a submission form from the lab of choice. Credit: Doug Mayo, UF/IFAS

To submit a hay sample to a lab for testing, you will need to fill a 1-quart Ziploc bag with ground hay from probing 7-10 random hay bales from each cutting or purchased lots. Samples of hay from the exterior of a bale will not provide an adequate representation of the hay you will be feeding.   You also don’t want to sample only a single bale.  Just as with soil testing, you want to try to get a representative sample from each cutting by taking core samples from bales produced from different parts of the field.  If you purchased the hay to be tested, just randomly sample from as many different bales as possible from each load.

Forage Testing

There are a number of both commercial and university forage laboratories that can be used to provide a summary of the nutritional quality of your hay.  The main things you need to know are the moisture content or dry matter (%DM), crude protein (CP), and the energy level reported as total digestible nutrients (TDN).  The University of Florida has a forage testing lab at the  Range Cattle Research and Education Center in Central Florida, that provides a basic test for $7/sample:  UF Forage Test Submission Form.  You can also send in hay samples through the Southeast Hay Contest that are analyzed by the University of Georgia’s Forage Lab:  SE Hay Contest Entry Form.  For $22 you get the forage analysis, a nitrate level test, and may win recognition at the Sun Belt Ag Expo as one of the top forage producers in the region.  The entry deadline is the third week in September each year.  If you want to use a commercial service, you can also submit samples to Waters Ag Lab in Camilla, GA:  Waters Feed Test Submission Form.  No matter which lab you select, the goal is find out what level of protein and energy is provided by the hay, so you can calculate the level of supplemental feed needed to complement it.

Forage Analysis Results

Most all forage labs provide sample analysis results in two formats:  as-sampled and dry-matter.  The as-sampled column would be useful for actual ration formulation of a total mixed ration.  In general though, you should focus on the dry-matter columns for comparisons between forages, and for basic supplementation calculations.  Moisture levels of forages are rarely identical, so removing the moisture gives a more accurate comparison.  For basic supplementation program development, you would use the highlighted dry-matter protein and energy values.  If you want to know more about the other information provided in a forage test, Understanding Your Forage Test Report is an article that was published a while back that more completely explains what each of the reported values represent in a standard forage test lab report.

sample hay test rport
The forage analysis report above is fairly typical quality for average quality Bahia or low quality Bermudagrass hay that was more mature because of frequent summer rains.  If you were going to feed this hay to lactating cows, or growing animals you would expect those animals to be deficient in both protein and energy.  These numbers mean very little, however, without also knowing the nutrient requirements of the animals you are feeding.

Decision Aids for Supplement Calculations

There are a number of commercial software options for livestock ration balancing, as well as private nutrition consultants that provide very precise calculations for complete ration balancing.  For feedlots and dairy operations, having very precise mixing recipes is essential.  For most cow-calf operations, however, determining the right amounts of supplements to provide is not that complicated.  Since you typically feed hay free-choice, all you really need to know is whether the hay is adequate or deficient in protein and energy.  Once you know that, a simple spreadsheet can be used to provide a good estimate of the type and amount of supplement required to maintain body weight.  Dr. Nicolas DiLorenzo, UF/IFAS Beef Specialist recently developed a very simple spread sheet called the UF HAY BALANCER that can be used to help cattle producers make decisions on supplement choices for mature cows on a free-choice hay diet.  The University of Georgia also has a decision aid spreadsheet called the UGA BASIC BALANCER  that is a little more complex, but it can be used to compare supplements for brood cows, bulls, heifers, and stockers, as well as providing some feedstuff cost comparisons.  Both of these are Microsoft Excel spreadsheets that come with information pre-loaded for use.  Commodity prices do fluctuate, so you may need to update the prices in the feed list provided.

Putting it All Together

In closing, I wanted to share an example of the end results of this process to demonstrate how the UF Hay Balancer can be used to help cattle producers become more precise with feeding supplements to compliment the hay they produce or purchase.  For this example lets assume that you must purchase hay to feed 25 cows for 30 days that will be in their 2nd month, or peak lactation.  This would be the time of most concern, because if you don’t supply adequate nutrition for these cows they will lose weight, reduce milk production, delay cycling and calve later for the following season. The following is a comparison of two types of hay at different prices, and a comparison of different supplement options.  You can purchase 850 pound Bahia hay for $43 per bale or 1,000 pound Bermudagrass bales for $67 per bale (based on Alabama Weekly Hay Report).  Which would be the best to purchase?

A comparison of two types of hay and the supplements needed to maintain cows at peak lactation. Source UF Hay Balancer, Alabama Weekly Hay Report and Alabama Weekly Feedstuff/Production Cost Report.

As you can see from this summary, this was not a simple scenario to answer.  The end result of this exercise was that even though the bahiagrass hay was lower in quality, the cheaper price compensated for the lack of quality.  The Bahia hay required a supplement that offered both protein and energy such as whole cottonseed, that can be purchased from local cotton gins, to balance the diet for these cows.  The Bermudagrass hay provided adequate protein, so an energy supplement such as corn or molasses was all that required for a balanced diet.  However, using 4 pounds/head/day of whole cottonseed, a rancher could feed his or her herd for 30 days cheaper with Bahia hay than with Bermudagrass hay, even though the supplement costs were $45 lower. If you had worked through this scenario with hay you have grown yourself, with similar production costs, the Bermudagrass hay would have been the better option.

If you would like assistance with forage testing, or balancing cattle herd supplementation, contact your local county extension agent.  They can help you develop a precision feeding program for your herd.

Friday Feature: The Ride Over Gate

Friday Feature: The Ride Over Gate

Every livestock producer has daydreamed about automatic gates to make travel around ranches faster and easier.  But, it is too expensive to provide power and hydraulic cylinders for each pasture gate.  This week’s featured video was produced by the Wrangler Company in New Zealand to introduce their Ride Over GateThe ride over gate is a small, spring loaded gate that allows four wheelers, utility vehicles, and center pivot irrigation wheels to pass through fences to access pastures without ever having to stop to open and close the gate, with no electricity needed.  With their gate system, checking livestock on a utility vehicle can be much more convenient. 

*******************************************************************************

If you enjoyed this video, you might want to check out the featured videos from previous weeks:  Friday Features

If you come across an interesting or humorous video, or a new product innovation related to agriculture, please send in a link, so we can share it with our readers. Send video links to:  Doug Mayo

 

 

Ticks:  A Health Risk for Livestock and their Owners

Ticks: A Health Risk for Livestock and their Owners

 

Historical photo of ranchers spraying cattle for ticks in Florida. Photos from the Smathers Archives.

The bacteria that cause Lyme disease is transmitted by the black-legged tick, Ixodes scapularis. Credit:  James M. Newman, UF/IFAS FMEL

Most people can probably tell you that ticks carry Lyme disease. This bacterial disease can cause long-term health problems for humans if left untreated, but it is thankfully relatively rare to find in Florida (132 confirmed cases in 2016). Though Lyme disease may be the best known tick-borne disease, there are others, such as Ehrlichia and Anaplasma, that are potentially harmful to both humans and animals, including livestock.

Ticks are not insects. They are arachnids, closely related to spiders, but with the bad habit of feeding on blood. Humans are not the preferred source of blood for ticks, but most species are perfectly happy settling for human blood. Of the ticks found in our area, the brown dog tick and American dog tick cause the most trouble. That being said, you might also find other species such as the Gulf Coast tick or lone star tick, but these are less likely to be problematic.

The cattle tick may be of interest to livestock owners, as it may transmit disease to not only cattle but also horses, sheep, and goats. Introduced to the United States along with the cattle that accompanied early explorers, this tick was originally native to the Mediterranean region and the Near East. It stays on one host, feeding for 18-20 days before females drop off to lay their eggs. They may produce up to four generations every year, meaning that a small population, once established, has the potential to grow very large very quickly. This makes them dangerous, coupled with the fact that they can carry diseases such as anaplasmosis, caused by the bacteria Anaplasma marginale, and Texas cattle fever, caused by the haemoprotozoan parasites Babesia bigmina and Babesia bovis.

Texas cattle fever devastated herds in the late 1800s, spread by the cattle tick. Eradication programs in place since 1906 have limited this species of tick to a few counties in south Texas, but the danger exists that deer or other wildlife could carry these pests to other areas. Part of what helps keep this danger to a minimum are ongoing eradication and surveillance efforts, including surveillance by the Florida Department of Agriculture and Consumer Services (FDACS). You can help these efforts, whether or not you own livestock, by turning ticks you find in for testing to FDACS. Their Division of Animal Industry can be reached at (850) 573-0299.

To help control ticks of any sort, try maintaining the landscape to deter them. Keep wildlife out with fences or deterrents, and ensure the edge of lawns, fields, and pastures are free of leaf litter and debris. Keep lawns mowed and don’t let pets out into the woods where they can pick up ticks to bring home. Use insecticides if needed; repellents may work for personal use. Livestock may be treated with pyrethroid sprays or wipe-on products. Ticks may attach to any part of an animal, but in livestock tend to prefer the tail, head, neck, chest, and belly, particularly near the legs. Heavy infestations may require an application of insecticides to the area, indoors or out, to reduce major infestations.

The lone star tick feeds on the blood of various animals including humans. This tick does not transmit Lyme disease, but can transmit various other pathogens such as ehrlichiosis, rickettsiosis, tularemia, and theileriosis. Adult lone star ticks: male (left) and female (right).  Source:  EDIS Lone Star Tick Photo credit: Lyle Buss, UF/IFAS

 

For more information on this subject, use the following links:

Texas A&M’s TickApp

Ticks (Family Ixoididae)

Gulf Coast Tick, Amblyomma maculatum Koch (Acari: Ixodidae: Amblyomminae)

Lone Star Tick Amblyomma americanum (Linnaeus) (Acari: Ixodidae)

American Dog Tick, Dermacentor variabilis (Say) (Arachnida: Ixodida: Ixodidae)

Brown Dog Tick, Rhipicephalus sanguineus Latreille (Arachnida: Acari: Ixodidae)

Lyme Disease

Lyme Disease in Florida Horses

Ehrlichia and Anaplasma in Florida

External Parasites on Beef Cattle

 

Weed of the Week:  Perilla Mint

Weed of the Week: Perilla Mint

Photo Credit: Tennessee Vascular Plants Eugene Wofford

Perilla Mint is a toxic ornamental that has escaped from landscapes in the Southern U.S. and is now an established pasture weed. As a summer annual it grows in shaded areas up to a height of 2 feet tall. It is often identified by its purple shading on the undersides of the leaves. All parts of the plant are toxic to livestock, with symptoms including labored breathing and death. Late April to early June is the ideal time to scout your pastures for Perilla Mint.

For help identifying weeds or developing a control plan for your operation, please contact your county extension agent. 

For more information on this topic please use the links for the following  publications:

UT Extension Perilla Mint

Scout Pastures for Toxic Perilla Mint

Spring is a Good Time to Scout Pastures for Toxic Weeds

 

Thinning the Pawpaw Patch in Your Pastures

Thinning the Pawpaw Patch in Your Pastures

Figure 1. Pawpaws are typically small shrubs that range from 2 to 4 feet tall in pastures. Photograph by B. Sellers.

Pawpaws (Asimina spp.) are members of the custard family, and 10 species are known to occur in the state.  Of these 10, fourpetal pawpaw (Asimina tetramera) is on the endangered species list, but this species is found primarily in coastal pine scrub habitats in Martin and Palm Beach counties.  Most pawpaw species in Florida are considered to be small shrubs and are 2-4 feet tall (Figure 1).

While pawpaw species are native, serve as a host for the zebra swallowtail butterfly, and the fruit are edible, they can become problematic in grazing areas (Figure 2).  In fact, the problem seems to be increasing, based on calls coming into to County Extension Offices.

Figure 2. Illustration of pawpaw plants invading a pasture. Photograph by B. Sellers.

These woody species are usually multi-stemmed and stems arise from a very deep taproot that can be as big as 3 inches in diameter (Figure 3).

Figure 3. Pawpaw roots have a very large taproot, and once established are extremely difficult to control.

Leaves are present from early April through October, but may exist through December in some areas of the state.  Flowering occurs in April to May, and seed production is reportedly low. Flowering often occurs before leaves begin to grow in the spring (Figure 4).

Figure 4. Flower formation in pawpaw typically occurs before leaves begin to grow in the spring. Photograph by B. Sellers.

As with lantana, pawpaw control appears to be somewhat difficult.  Mowing typically results in an increase in the number of stems, and hand digging is likely the only “mechanical” method of removing pawpaw plants from improved pastures, as they do not tolerate root cutting.  Considering the long and deep taproot of pawpaw, control with a single herbicide application should not be expected.

Experiments were conducted in a pasture that was heavily infested with pawpaw in central Florida.  Herbicide treatments included 1 qt/A triclopyr (Remedy Ultra), and  triclopyr at 1 qt/A followed by triclopyr at 1 qt/A 6 months later, Pasturegard HL at 1 qt/A, and Pasturegard HL at 1 qt/A followed by an additional 1 qt/A 6 months later. Methylated seed oil (MSO) was added to each spray mixture at 1% v/v.  The initial treatment was applied in May and the sequential treatments were applied in late November. To evaluate the level of pawpaw control, the number of pawpaw stems were counted in each plot on the day of application, 6 months after treatment (MAT), and 12 MAT.

Living stems in plots were very low at 6 MAT (at the time of the sequential application), with all treatments providing >90% reduction in stems, as compared to pre-treatment numbers.  However, stems densities increased by 12 MAT (6 months after sequential treatment).  A single application of Remedy or Pasturegard HL resulted in 49 and 40% less stems compared to pre-treatment stem counts, respectively.  A sequential application of either herbicide resulted in >70% reduction in pawpaw stems counts compared to pre-treatment levels.  Although stem densities did not differ significantly between Remedy and Pasturegard HL plots, pawpaw plants were typically shorter in plots treated with Pasturegard HL, indicating that regrowth of pawpaw plants was slower when treated with this herbicide as compared to Remedy.

In a separate study, these same treatments were applied in late November, but virtually no reduction in living stems was observed 6 MAT.  This indicates that early Spring (April to May) application may be the best application timing for this species.

For more information on pasture weed control, and the herbicides registered for use in Florida pastures, use the following link:

Weed Management in Pastures and Rangeland—2018

 

Sunn Hemp for Forage or Wildlife Food Plots

Sunn Hemp for Forage or Wildlife Food Plots

Sunn hemp pasture in Walton County. Photo Credit: Jennifer Bearden

Sunn hemp is a fast growing, warm season, annual legume.  It grows 6-7 feet tall.  Sunn hemp can tolerate a wide range of soil pH (5.0-8.4).  It is native to India and Pakistan.  The University of Hawaii and USDA NRCS, together, released the variety called “Tropic Sun” in 1982.  This variety only makes seed during periods of short day length and a certain range of temperatures.  These factors limited seed production.  Recently, however, Auburn University released AU Golden and AU Darbin varieties that are able to produce seeds in more temperate climates.  Since sunn hemp is a legume, it fixes more than 120lbs of nitrogen from the environment per acre, per season.  It can yield 3,000 to 10,000lbs of forage per acre.  It can be grown in a wide range of soil types, but is most productive in more fertile soils.  Sunn hemp has traditionally been utilized as a cover crop, but has recently been evaluated as a forage for livestock as well for wildlife food plots.

The advantages of using sunn hemp as a cover crop are the large amount of biomass produced per acre, nitrogen fixation, nematode suppression, and weed suppression.  Because it can grow in a wide range of soil types and pH levels, and because of its drought tolerance, hunters have tried it for wildlife food plots.  Research has shown that Sunn Hemp is an acquired taste, and that livestock and wildlife need time to become accustomed to it, but the nutrient quality of the leaves is very high with crude protein (CP) ranging from 25-30%.

Sunn hemp is an interesting option for livestock warm season annual grazing.  Plant sunn hemp once soil temperatures have reached 65°F.  Use a seeding rate of 25-30lb per acre and planting depth of 1/4” to 1”.  Don’t forget the cowpea type inoculant.  Because this is a legume crop that fixes its own nitrogen (N), N fertilization is not required.  Soil test for pH, phosphorus and potassium prior to planting, and apply the recommended nutrients based on the soil test results.

Grazing management is very important for Sunn Hemp. The goal is to keep the plants in a vegetative growth stage with a high percentage of leaves compared to stalks.  The leaves are 25-30% CP with TDN of 65-71%.   The stems are much lower quality (8-10% CP and 22% TDN).  Grazing and forage management should focus on maximizing leaf-to-stem ratio.  Start grazing approximately 45 days after planting when the sunn hemp reaches 1.5-3 feet tall. If you wait too long, sunn hemp can reach a height of over 6′ and livestock will break off the plants and prevent regrowth.  Stop grazing when stubble is 12-18″ to allow regrowth.  Overgrazing or mowing below 12″ can kill the plant and prevent regrowth.  Because of its high quality, sunn hemp works well using limit grazing (1-3 hours/day) to compliment traditional perennial pastures.

Sunn Hemp is an annual legume that is not related to industrial hemp or marijuana.  It is actually in the Crotalaria family, but unlike other species in this plant family that are toxic, sunn hemp contains much lower levels of alkaloid compounds.  Sunn hemp seeds do contain small amounts of toxic alkaloids, so seeds should not be fed in livestock diets.  Small amounts of seeds consumed while grazing are not enough to cause acute toxicity.  The leaves and stems are not toxic to livestock.

 

For more information on using sunn hemp as a forage, use the following link to a recently published Alabama Extension fact sheet:

Grazing Sunn Hemp