Grafting Tomatoes for Disease Resistance and Improved Yield

Grafting Tomatoes for Disease Resistance and Improved Yield

A few weeks ago I was lucky enough to attend North Carolina State’s Tomato Field Day, at the Mountain Horticultural Crops Research and Extension Center in Mills River, NC.  Every summer crowds flock from all over the Southeast to learn what’s new in the world of tomatoes.  Since it’s not always convenient for you to drop what you’re doing to make a road trip to North Carolina, I’ll highlight something I learned from the field day.

Jonathan Kressin, a PhD candidate in Plant Pathology at NC State, is researching the effects of grafted tomatoes on bacterial wilt management.  Jonathan is not only researching rootstock varieties, he is also looking at cultural practice impacts on bacterial wilt.

Grafted Tomato Transplant

A recently transplanted grafted tomato plant. Photo Credit: Josh Freeman, University of Florida/IFAS

Materials and Methods

Jonathan selected 12 rootstock varieties for trials at the 3 tomato growing regions in North Carolina (Mountains, Piedmont, and Coastal Plains).  The cultural practice he is studying is transplant depth.  He wants to determine if burying the graft union has any effect on bacterial wilt tolerance in grafted plants.

Bacterial Wilt in a Tomato Field

A tomato field in Florida with severe incidence of bacterial wilt. Photo credit: Mathews Paret, University of Florida/IFAS

Results

  • Several of the tested rootstocks performed equally well across the 3 regions.  To help with disease resistance, it is important to rotate rootstock varieties and suppliers.
  • The rootstock variety ‘Shield’ displayed the least bacterial wilt resistance overall.
  • The rootstock variety ‘CRA66’ is recommended for open-pollinated varieties.
  • Transplant depth (burying plants below the graft union compared to above the union) did not have any effect on bacterial wilt occurrence.
  • Grafted plants have the potential to increase yield and average fruit size.

Future Research

  • Studies will be conducted to validate and understand the effect of transplant depth on bacterial wilt occurrence.
  • Genetic testing will be conducted to help develop rootstock rotation recommendations.

Grafted transplants significantly increase the cost of production, but as agricultural automation becomes more prevalent, transplant costs should come down.  Grafted tomatoes have the potential to increase yields and reduce inputs.  It’s exciting to see what the future holds for the ever adapting business of tomato farming.  More details on NC State’s tomato research can be found at the Mountain Horticultural Crops Research and Extension Center’s Tomato Production website.

Brown Marmorated Stink Bug Control Using Natural Enemies

Brown Marmorated Stink Bug Control Using Natural Enemies

A few weeks ago I was lucky enough to attend North Carolina State’s Tomato Field Day, at the Mountain Horticultural Crops Research and Extension Center in Mills River, NC.  Every summer crowds flock from all over the Southeast to learn what’s new in the world of tomatoes.  Since it’s not always convenient for you to drop what you’re doing to make a road trip to North Carolina, I’ll highlight something I learned from the field day.

Stink Bug Control by Dr. Jim Walgenbach

Distribution

The brown marmorated stink bug (BMSB) was introduced into the United States from Asia.  The insect pest was first found in Pennsylvania and is suspected to have made its way to the US in packing material.  BMSB was first reported in 2009 in Hillsborough County, FL and since been found in additional Florida counties.  It has a wide host range including fruits, vegetables, and ornamentals.

Fifth instar nymph of the brown marmorated stink bug

Fifth instar nymph of the brown marmorated stink bug on raspberry in Allentown, Pennsylvania.  Photo Credit: Gary Bernon, USDA-APHIS

Identification

BMSB has a typical stink bug body shape and size with a mottled brown coloring.  The key identification feature is alternating dark and light bands on the last two antennal segments.

Trissolcus japonicus adults.

Trissolcus japonicus adults. Female to the left; male to the right. Photo Credit: FDACS – DPI

Biological Control with Natural Enemies

Dr. Walgenbach’s team is currently researching the impact of suppressing BMSB populations by native predators such as: katydids; jumping spiders; earwigs; and lady beetles.  Current observations indicate only a minor effect from these predators on BMSB.

Parasitized BMSB

BMSB egg masses parasitized by T. japonicus. Photo Credit: Matt Lollar, University of Florida/IFAS Extension.

Trissolcus japonicus Assessment

A regional effort has been implemented to monitor the introduction, spread, and efficacy of the Asian parasitoid Trissolcus japonicus.  Trissolcus japonicus is a tiny wasp that parasitizes the eggs of various stink bug species.  It was first collected from China and brought back to quarantine facilities in the US for evaluation, as a potential biological control agent.  Host-specific tests have indicated that T. japonicus prefers to parasitize BMSB eggs over eggs of other stink bug species.  It is suspected that release permits for the wasp will be available from the USDA in the near future.

Reporting in Florida

The brown marmorated stink bug overwinters in homes to keep warm.  If stink bugs are found in yuor home, they may be the BMSB and should be reported to the Florida Department of Agriculture and Consumer Services Division of Plant Industry.  Specimens should be collected for identification.

To follow the research of Dr. Walgenbach and his colleagues, please visit NC State’s Entomology webpage.

New North Carolina Tomato Varieties Offer Disease Resistance and Better Flavor

New North Carolina Tomato Varieties Offer Disease Resistance and Better Flavor

Dr. Randy Gardner discussing NC State tomato varsity trials. Photo Credit: Matt Lollar

A few weeks ago I was lucky enough to attend North Carolina State’s Tomato Field Day, at the Mountain Horticultural Crops Research and Extension Center in Mills River, NC.  Every summer crowds flock from all over the Southeast to learn what’s new in the world of tomatoes.  Since it’s not always convenient for you to drop what you’re doing to make a road trip to North Carolina, I’ll highlight something I learned from the field day.

New Varieties with Dr. Randy Gardner and Dr. Dilip Panthee

Dr. Randy Gardner is a retired tomato breeder from NC State with more than 30 years of experience.  Dr. Dilip Panthee is NC State’s newest tomato breeder.  Both are working on developing new cultivars with both disease resistance and an added emphasis on flavor.  The three main diseases they are focusing on for resistance and/or tolerance are Late Blight, Bacterial Spot, and Verticillium Wilt Race 2.  See the list below of some of their newest releases.  Just remember that these varieties were developed for North Carolina growing conditions, so it’s recommended that you give them a try on a small scale to evaluate them for your area.The varieties listed in the table above are available in the market.  For a sneak peak of what’s in store for the future, check out this poster developed by Dr. Panthee:  NC State Tomato Variety Replicated Trials 2018.  More details on NC State’s tomato research can be found at the Mountain Horticultural Crops Research and Extension Center website.  Thanks to NC State for an excellent field day!

Dr. Randy Gardner and Dr. Dilip Panthee, NC State tomato breeders, are working on disease resistance with an added emphasis on flavor. Photo credit: Dr. Dilip Panthee, NC State

 

Friday Feature:  Flexnet Drip Irrigation System

Friday Feature: Flexnet Drip Irrigation System

This week’s featured video was produced by Netafim to introduce their FlexNet™ drip irrigation system.  Unlike traditional layflat tubing systems that must be pierced for drip-line tubing attachment, their FlextNet plastic tubing has built in connectors to prevent leaks at the hose source. These connectors can be customized to match a farmers specific row spacing from 12-40″.  This innovative irrigation system could be useful for irrigation of vegetables, cucurbits, or other crops with drip irrigation in the row beds.

According to the FlexNet™ website, this system offers the following advantages over traditional layflat systems:

  • Quick Assembly
    Integral welded connectors ensure a secure, leak-proof connection between distribution pipes and laterals (with no teflon or glue required when using Netafim fittings)
  • Agro-Machinery Friendly
    When not pressurized, it’s so durable it can be stepped on or driven over
  • Low Expansion Rate
    Pipe lays flat, has zero axial elongation and will not tangle or bend

FlexNet is simple, flexible and light-weight for maximum portability and quicker movement from field to field. It can be used in surface or subsurface applications and requires no specialized tools for installation.

*******************************************************************************

If you enjoyed this video, you might want to check out the featured videos from previous weeks:  Friday Features

If you come across an interesting or humorous video, or a new product innovation related to agriculture, please send in a link, so we can share it with our readers. Send video links to:  Doug Mayo

 

Water Source Recommendations for Food Safety

Water Source Recommendations for Food Safety

Supplemental water is necessary for good crop yields in fruit and vegetable production. Water quality is equally as important as water quantity when it comes to fruit and vegetable production. Unfortunately, water can transport harmful microorganisms from adjacent lands or other areas of the farm. The water source and how the water is applied influence the risk for crop contamination to occur.

Water is used for various purposes during production: harvesting, and handling fresh produce, irrigation, cooling, frost protection, as a carrier for fertilizers and pesticides, and for washing tools and harvest containers, hand washing, and drinking.

Washing lettuce. Photo Credit: Cornell University Extension

The FDA’s Food Safety Modernization Act (FSMA) proposed water compliance date is not until 2022, but it will be here before you know it. Water quality is an important component of a Food Safety Plan. A good first step in ensuring compliance with FSMA water quality standards is to evaluate the water sources on the farm.  For more information on compliance dates, please visit the Produce Safety Alliance’s Website.

Water Source

The three common sources of water used on farms are surface water, well water, and municipal water.

Surface water includes ponds, lakes, rivers, and streams. It is at the highest risk for contamination because there is limited control on what flows downstream or from adjacent land. Wild and domestic animals, manure piles, and sewage discharges are all potential sources of contamination in surface waters.

The most common water source for North Florida farms is well water. Well water used for farming is at a moderate risk of becoming contaminated, when compared to surface water (highest risk) and municipal water (lowest risk). Wells are at a higher risk of becoming contaminated when located near flood zones, septic tanks, drainage fields, and manure/compost storage areas. The risk of contamination is further heightened if the well was not constructed properly, or if the casing is cracked. Wells should be properly sited, constructed, and maintained to keep contamination risks lower.

a well pump

A recently installed well pump on a North Florida watermelon farm. Photo Credit: Matt Lollar, University of Florida/IFAS Extension

Well Design and Construction

  • Preliminary Investigation – A preliminary investigation helps determine the design of a well. Existing wells in the area should be checked out to help determine depth and potential capacity. If records for the area aren’t available, then test holes should be drilled to determine the best location for water production.
  • Casing – Casing material should be determined based on site characteristics. The casing needs to extend above the surface water level to reduce contamination risks. The casing is sealed in place with grout. A poor grouting job can also promote contamination. Casing diameter is selected based on well capacity.
  • Well Screen – A commercially designed well screen should be installed to minimize hydraulic head loss. Screen diameter and material should be determined based on the preliminary investigation results. Gravel packing is recommended in some areas.

For more recommendations on well design and construction, please visit the University of Florida/IFAS publication: Design and Construction of Screened Wells for Agricultural Irrigation Systems

Please note that it is important to monitor your well water quality at least twice during each growing season.  A list of FSMA approved water testing methods can be found at Cornell University’s Law School Website.

 

Panhandle Fruit & Vegetable Conference Agenda Now Available!

Panhandle Fruit & Vegetable Conference Agenda Now Available!

Join us for the Panhandle Fruit & Vegetable Conference on February 19 & 20 in Pensacola! Registration includes a farm tour, dinner after the tour, breakfast & lunch the next day, and excellent educational sessions. The complete agenda is now available.  Use your mouse or finger to “click” on the image below for full screen viewing.  Register online at:  Panhandle Fruit & Vegetable Conference Registration Page

Click your mouse on the image for full screen viewing.