The Tale of the Atlantic Tripletail

The Tale of the Atlantic Tripletail

The Atlantic Tripletail (Lobotes surinamensis) is a very prized sportfish along the Florida Panhandle. Typically caught as a “bonus” fish found along floating debris, the tripletail is a hard fighting fish and excellent table fare. Just as the name implies, this fish is equipped with three “tails” that help aid it in propulsion; and also help contribute to their strong fighting spirit. In addition to the caudal fin, tripletail have very pronounced “lobed” dorsal and anal fin soft rays that sit very far back on the body, giving it the appearance of three tails (triple-tails).

Tripletail Art

Atlantic Tripletail (Lobotes surinamensis) – FWC, Diane Rome Peebles 1992

Tripletail are found in tropical and subtropical seas around the world (except the eastern Pacific Ocean) and are the only member of their family found in the Gulf of Mexico. Tripletail can be found in all saltwater environments, from the upper bays to the middle of the Gulf of Mexico. In the Florida Panhandle, tripletail begin to show up in the bays beginning in May and can be found up until October/November. They are masters of disguise, usually found floating along floating debris, crab trap buoys, navigation pilings, and floating algae like Sargassum. When tripletail are young, they are able to change their colors to match the debris, albeit it is usually a variation of yellow, brown, and black. Adult tripletail can change color as well, but the coloration is not as vibrant as the juveniles. Floating alongside debris and other floating materials protects them from predators and gives them food access. Small crustaceans, like shrimp and crabs, and small fish will gather along the floating debris, looking for protection, giving the camouflaged tripletail an easy meal.

Tripletail or leaf?

Baby Tripletail or Leaf?  – Thomas Derbes II

Tripletail are opportunistic feeders that are what I classify as “lazy hunters.” Tripletail will hang out along any floating debris and wait for the food to come to them. They typically will not chase their prey items too far and will abandon the hunt if they expend too much energy. Since they are opportunistic feeders, their diet varies widely, but they cannot resist a baby blue crab, shrimp, or small baitfish like menhaden (Brevoortia patronus) that might visit their floating oasis. When further offshore, it is not uncommon to find many tripletail “laying out” on sargassum or floating debris. I personally have seen a dozen full-sized tripletail inside of a large traffic barrel 25 miles offshore that saved a skunk of a deep-dropping fishing trip.

Oyster Farmer holding a Tripletail fish

Tripletail Caught Off An Oyster Farm – Brandon Smith

When targeting tripletail, anglers will typically sit at the highest point of the boat (some anglers have towers for spotting tripletail) and cruise along floating crab trap buoys, pilings, and sometimes oyster farms looking for Tripletail. These fish are very easily spooked, and a slow, quiet approach is best. Once in casting distance, toss your preferred bait (I typically want to have baby crabs or live shrimp when targeting tripletail) close to the floating structure, but not too close to spook the fish. You can usually watch the fish eat your bait (another added bonus) and once you set the hook, the fight is on! In the state of Florida, tripletail must be a minimum of 18 inches and there is a daily bag limit of 2 fish per person. Be very careful handling tripletail as they have very sharp dorsal and anal fins and their operculum (gill cover) is also very sharp with hidden spines.

So next time you’re out fishing and see something floating, make sure you give it a good look over. There might be a camouflaged tripletail that you can add to your fish box!

tripletail fisherman

Tripletail Caught While Working Oyster Gear – Thomas Derbes

Marine Creatures of the Northern Gulf of Mexico – Viruses

Marine Creatures of the Northern Gulf of Mexico – Viruses

We are going to begin this series of articles with a “creature” that some do not consider alive – viruses.  While studying marine science in college, and my early days as a marine science educator, there was a debate as to whether viruses were actually alive and should be included in a biology course.  A quick glance at the textbooks of the time shows they were often omitted – though they were included in my microbiology class.  Why were they omitted?  Why did some consider them “non-living creatures”?

The coronavirus next to a strand of DNA.
Image: Florida International University.

Well, we always began biology 101 with the characteristics of life.  Let’s scan these characteristics and see where viruses fit.

  1. Made of cells. This is not the case for viruses.  A typical cell will include a cell membrane filled with cytoplasm and a nucleus, which is filled with genetic material (chromosomes containing DNA and RNA).  An examination of a virus you will find it is either DNA or RNA encapsulated in a protein coat.  It is “nucleus-like” in nature.  Most cells run between 10-20 microns in size.  A typical nucleus within a mammal cell will run between 5-10 microns.  A typical virus would be 0.1 microns – these are tiny things – MUCH smaller than a cell.
  2. Process energy. Nope – they do not. Most cells utilize energy during their metabolism.  Viruses do not do this.
  3. Growth and development. Nope again. They “spread”, which we discuss in a moment, but they do not grow.  We are now 0-3.
  4. Homeostasis. Homeostasis is the movement of material and environmental control to remain stable – and viruses do not do this.
  5. Respond to stimuli. Yes… here is one they do. Studies show that viruses do respond to their chemical and physical environment.
  6. Metabolism. As mentioned above, this would be a no.
  7. Adaptation.   Studies show that through very rapid reproduction they can adapt to the changing environment they are in.
  8. Reproduce. This is a sort of “yes/no” answer.  They do reproduce (as we say – “spread”) but they do not do this on their own.  They invade the nucleus within the cells of their host and replace their genetic material with that of the host creature.  Then, during cell replication within the host, new viruses are produced and “spread”.

So, you can see why there is a debate.  Of the eight common characteristics of life, viruses possess only three – and one of those can only be achieved with the assistance of a host creature.  Now the question would be – do be labeled as a “creature” do you need ALL eight characteristics of life?  Or only a few?  And if only a few – how many?  Because of this most biologists do not consider them alive.

During one class when we were discussing this a student made a comment – “don’t we KILL viruses?  If so, then it must be alive first”.  Point taken – and we should understand the phrase “kill a viruses” does not mean literally killing.  It is a phrase we use.  Though some argue we do kill viruses and thus…

Another point we could make here is that all life on the planet has been classified using a system developed by the Swedish botanist Carlos Linnaeus.  Each creature is placed in a kingdom, then phylum, class, order, family, genus, and eventually a species name is given.  We “name” the creature using its genus and species name – Homo sapiens for example.  We do not see this for viruses.

All that said, both the National Oceanic and Atmospheric Administration and the National Institute of Health indicate the “most common form of life in the sea are viral-like particles” – with over 10 million in a single drop of seawater.  We will leave the debate here.  Your thoughts?

The Rare Coastal Dune Lakes of Walton County

The Rare Coastal Dune Lakes of Walton County

Western Dune Lake Tour

Walton County in the Florida Panhandle has 26 miles of coastline dotted with 15 named coastal dune lakes.  Coastal dune lakes are technically permanent bodies of water found within 2 miles of the coast. However, the Walton County dune lakes are a unique geographical feature found only in Madagascar, Australia, New Zealand, Oregon, and here in Walton County.

What makes these lakes unique is that they have an intermittent connection with the Gulf of Mexico through an outfall where Gulf water and freshwater flow back and forth depending on rainfall, storm surge and tides. This causes the water salinity of the lakes to vary significantly from fresh to saline depending on which way the water is flowing. This diverse and distinctive environment hosts many plants and animals unique to this habitat.

There are several ways to enjoy our Coastal Dune Lakes for recreation.  Activities include stand up paddle boarding, kayaking, or canoeing on the lakes located in State Parks.  The lakes are popular birding and fishing spots and some offer nearby hiking trails.

The state park provides kayaks for exploring the dune lake at Topsail. It can be reached by hiking or a tram they provide.

Walton County has a county-led program to protect our coastal dune lakes.  The Coastal Dune Lakes Advisory Board meets to discuss the county’s efforts to preserve the lakes and publicize the unique biological systems the lakes provide. Each year they sponsor events during October, Dune Lake Awareness month.  This year, the Walton County Extension Office is hosting a Dune Lake Tour on October 17th.  Registration will be available on Eventbrite starting September 17th. You can check out the Walton County Extension Facebook page for additional information.

Longleaf Pine Savannas: Fall Flower Walk

Longleaf Pine Savannas: Fall Flower Walk

Fall is not typically the season when we expect to see high plant activity, but in Florida’s longleaf pine savannas, fall thrive with colors. These unique ecosystems, characterized by their open canopy of towering longleaf pines and a diverse understory of grasses and wildflowers, are particularly beautiful in the fall, when seasonal flowering highlights the rich plant diversity that characterize these habitats (Figure 1).

Longleaf pine savanna flowering plants. Photo credits UF/IFAS communication

If you take a walk through longleaf pine savannas this season, you will likely notice several species of blazing star (Liatris spp.) standing out with tall, spiky clusters of purple flowers, which attract pollinators such as bees and butterflies. A similar plant, Florida paintbrush (Carphephorus corymbosus), also attracts predators. For example, you might spot lynx spiders camouflaged on top of paintbrush flowers, waiting to ambush unsuspecting insects (Figure 2).

Figure 2: Lynx spider on Florida paintbrush. Photo credit: Carolina Baruzzi

Another common fall bloomer is the goldenrod (Solidago spp.) with its characteristic cascading spikes of yellow flowers. A common misconception is that goldenrod flowers cause allergies; in reality, ragweed pollen is to blame in most cases. In fact, while ragweed relies on wind to disperse its light, abundant pollen, goldenrods are primarily insect-pollinated. This means that their pollen is larger and heavier, and they generally produce it in smaller quantities, so it doesn’t become airborne as easily.

Although less conspicuous, many native grasses also flower during the fall in longleaf pine savannas. For example, toothache grass (Ctenium aromaticum) often blooms in summer, but it produces its distinctive corkscrew-shaped spikes following seedfall in the fall. Wiregrass (Aristida beyrichiana), a common native grass species in these habitats, frequently flowers during this season and can also give us important indication on site management (Figure 3). In fact, its flowering is primarily fire-stimulated as it tends to produce flowers and seeds when burned during the early summer. Therefore, a sea of flowering wiregrass often indicates that a site was recently burned!

ongleaf pine savannas with wiregrass inflorescences. Photo credit: Carolina Baruzzi

Fall flowering in longleaf pine savannas is more than just a colorful seasonal change — it is a reminder of the ecological resilience and biodiversity of these systems. If you want to learn more, about the plant and wildlife they support, you can click on these additional resources below:

EDIS: Bees and fire: how does fire in longleaf pine savannas affect bee communities?
EDIS: Pinus palustris: longleaf pine
Florida Wildflower Foundation
Florida Native Plant Society
2024 Pensacola Scallop Search Report

2024 Pensacola Scallop Search Report

Introduction

The bay scallop (Argopecten irradians) was once common in the lower portions of the Pensacola Bay system.  However, by 1970 they were all but gone.  Closely associated with seagrass, especially turtle grass (Thalassia testudinum), some suggested the decline was connected to the decline of seagrass beds in this part of the bay.  Decline in water quality and overharvesting by humans may have also been a contributor.  It was most likely a combination of these factors.

Scalloping is a popular activity in our state.  It can be done with a simple mask and snorkel, in relatively shallow water, and is very family friendly.  The decline witnessed in the lower Pensacola Bay system was witnessed in other estuaries along Florida’s Gulf coast as well.  Today commercial harvest is banned, and recreational harvest is restricted to specific months and to the Big Bend region of the state.  With the improvements in water quality and natural seagrass restoration, it is hoped that the bay scallop may return to lower Pensacola Bay.

Since 2015 Florida Sea Grant has held the annual Pensacola Bay Scallop Search.  Trained volunteers survey pre-determined grids within Big Lagoon and Santa Rosa Sound.  Below is the report for both the 2024 survey and the overall results since 2015.

Methods

Scallop searchers are volunteers trained by Florida Sea Grant.  Teams are made up of at least three members.  Two snorkel while one is the data recorder.  More than three can be on a team.  Some pre-determined grids require a boat to access, others can be reached by paddle craft or on foot.

Once on site the volunteers extend a 50-meter transect line that is weighted on each end.  Also attached is a white buoy to mark the end of the line.  The two snorkelers survey the length of the transect, one on each side, using a 1-meter PVC pipe to determine where the area of the transect ends.  This transect thus covers 100m2.  The surveyors record the number of live scallops they find within this area, measure the height of the first five found in millimeters using a small caliper, which species of seagrass are within the transect, the percent coverage of the seagrass, whether macroalgae are present or not, and any other notes of interest – such as the presence of scallop shells or scallop predators (such as conchs and blue crabs).  Three more transects are conducted within the grid before returning.

The Pensacola Scallop Search occurs during the month of July.

2024 Results

A record 168 volunteers surveyed 15 of the 66 1-nautical mile grids (23%) between Big Lagoon State Park and Navarre Beach.  152 transects (15,200m2) were surveyed logging 133 scallops.  An additional 50 scallops were found outside the official transect for a total of 183 scallops for 2024.

2024 Big Lagoon Results

75 volunteers surveyed 7 of the 11 grids (64%) within the Big Lagoon.  67 transects were conducted covering 6,700m2.

101 scallops were logged with an additional 42 found outside the official transects.  This equates to 3.02 scallops/200m2.  Scallop searchers reported blue crabs and conchs, both scallop predators, as well as some sea urchins.  All three species of seagrass were found (Thalassia, Halodule, and Syringodium).  Seagrass densities ranged from 5-100%.  Macroalgae was present in six of the seven grids (86%) but was never abundant.

2024 Santa Rosa Sound Results

93 volunteers surveyed 8 of the 55 grids (14%) in Santa Rosa Sound.  85 transects were conducted covering 8,500m2.

32 scallops were logged with an additional 8 found outside the official transects.  This equates to 0.76 scallops/200m2.  Scallop searchers reported blue crabs, conchs, and sand dollars.  All three species of seagrass were found.  Seagrass densities ranged from 50-100%.  Macroalgae was present in five of the eight grids (62%) and was abundant in grids surveyed on the eastern end of the survey area.

 

2015 – 2024 Big Lagoon Results

Year No. of Transects No. of Scallops Scallops/200m2
2015 33 0 0.00
2016 47 0 0.00
2017 16 0 0.00
2018 28 0 0.00
2019 17 0 0.00
2020 16 1 0.12
2021 18 0 0.00
2022 38 0 0.00
2023 43 2 0.09
2024 67 101 3.02
Big Lagoon Overall 323 104 0.64

 

2015 – 2024 Santa Rosa Sound Results  

Year No. of Transects No. of Scallops Scallops/200m2
2015 01 0 0.00
2016 01 0 0.00
2017 01 0 0.00
2018 01 0 0.00
2019 01 0 0.00
2020 01 0 0.00
2021 20 0 0.00
2022 40 2 0.11
2023 28 2 0.14
2024 85 32 0.76
Santa Rosa Sound Overall 1731 36 0.42

 

1 Transects were conducted during these years but data for Santa Rosa Sound was logged by an intern with the Santa Rosa County Extension Office and is currently unavailable.

Discussion

Based on a Florida Fish and Wildlife Research Institute publication in 2018, the final criteria are used to classify scallop populations in Florida.

Scallop Population / 200m2 Classification
0-2 Collapsed
2-20 Vulnerable
20-200 Stable

Based on this, over the last nine years we have surveyed, the populations in lower Pensacola Bay are still collapsed.  However, you will notice that in 2024 the population in Big Lagoon moved from collapsed to vulnerable for this year alone.

There are some possible explanations for this.

  • The survey effort in Big Lagoon was stronger than Santa Rosa Sound. 75 volunteers surveyed 7 of the 11 grids.  This equates to 11 volunteers / grid surveyed and 64% of the survey area was covered.  With Santa Rosa Sound there were 93 volunteers who surveyed 8 of the 55 grids.  This equates to 12 volunteers / grid surveyed but only 14% of the survey area was covered.  Most of the SRS grids surveyed were in the Gulf Breeze/Pensacola Beach area.  More effort east of Big Sabine may yield more scallops found.
  • There is the possibility of different teams counting the same scallops. Each grid is 1-nautical mile, so the probability of one team laying their transect over an area another team did is low, but not zero.
  • It is known that scallops have periodic population booms. Our search this year may have witnessed this.  We will know if encounters significantly decrease in 2025.

Whether there was double counting this year or not, the frequency of encounter was much higher than in previous years.  There were multiple reports from the public on social media about scallop encounters as well, and in some places we did not survey.  It is also understood that scallops mass spawn.  So, high density populations are required for reproductive success.  The “boom” we witnessed this year suggests that there is a population of scallops – albeit a collapsed one – in our bay.  It is important for locals NOT to harvest scallops from either body of water.  First, it is illegal.  Second, any chance of recovering this lost population will be lost if the adult population densities are not high enough for reproductive success.

Acknowledgements

We would like to thank ALL 168 volunteers who surveyed this year.  We obviously could not have done this without you.

Below are the “team captains”.

 

Harbor Amiss                                              Glen Grant                       Eric Stone

David Anderson                                          Phil Harter                       Neil Tucker

Laura Baker                                                 Gina Hertz                       Christian Wagley

Melinda Bennett                                         Sean Hickey                    Jaden Wielhouwer

Samantha Bergeron (USM class)           John Imhof                      Keith Wilkins

Cheri Bone                                                   Jason Mellos                   Christy Woodring

Cindi Cagle                                                  Greg Patterson

Cher Clary                                                    Kelly Rysula

 

A team of scallop searchers celebrates after finding a few scallops in Pensacola Bay.

Volunteer measures a scallop he found. Photo: Abby Nonnenmacher

 

Rick O’Connor                Florida Sea Grant; Escambia County

Thomas Derbes II          Florida Sea Grant; Santa Rosa County

The Party Boat Experience

The Party Boat Experience

My son and his girlfriend were visiting last week and wanted to go fishing.  Since she had never been deep sea fishing before, we decided that the best course of action would be to take the short four-hour trip on one of Destin’s party boats.

Party boats, also known as a head boat, are typically large boats from 50 to 100 feet long.  They can accommodate many anglers and are an economical choice for first-time anglers, small, and large groups. The boat we went on holds up to 60 anglers, has restrooms, and a galley with snacks and drinks, although you can also bring your own.  The cost per angler is usually in the $75 – $100 range and trips can last 4, 6, 8, or 10 hours.

We purchased our tickets through the online website and checked in at the booth 30 minutes before we departed.  Everyone gets on and finds a spot next to a fishing pole already placed in a holder on the railing. For the four-hour trip, it is about an hour ride out to the reefs.  On the way out, the enthusiastic and ever helpful deckhands explain what is going to happen and pass out a solo cup of bait, usually squid and cut mackerel, to each angler.  When you get to the reef, you bait your hooks (two per rod) and the captain says, “start fishing.”

The rods are a bit heavy and there are some tricks you need to learn to correctly drop your bait 100 feet to the bottom of the Gulf.  The deckhands are nearby to help any beginners and soon everyone is baiting, dropping, and reeling on their own.  There are a few hazards like a sharp hook while baiting, crossing with your neighbor’s line and getting tangled, and the worst one, creating a “birds nest” by not correctly dropping your line.  Nothing the deckhands can’t help with.

When you do finally catch a fish, you reel it up quickly and into the boat where a deckhand will measure it to make sure it’s a legal species and size and then use a de-hooker to place the fish in your bucket. After about 30 to 40 minutes, the captain will tell everyone to reel up before proceeding to another reef.  At this time, you take your fish to the back of the boat where the deckhands put your fish on a numbered stringer and on ice.

For the four-hour trip, we fished two reefs.  We had a lucky day with the three of us catching a total of 16 vermillion snapper, the most popular fish caught on Destin party boats.  It’s a relaxing ride back to the harbor during which the deckhands pass the bucket to collect any tips.  The recommended tip is 15-20% of your ticket price.  These folks work hard and exclusively for tips, so if you had a good time, tip generously.

Once back in the harbor, your stringer of fish is placed on a board with everyone’s catch and they take the time for anyone that wants to get some pictures with the catch.  Then, you can load your fish into your cooler, or the deckhands will clean your fish for you for another tip.  If you get your fish filleted, you can take them to several local restaurants that will cook your catch for you along with some fries, hush puppies and coleslaw.  It is an awesome way to end your day.

A happy angler after a party boat excursion.