Select Page
Searching for Terrapins in the Florida Panhandle

Searching for Terrapins in the Florida Panhandle

When I began working with terrapins 20 years ago, very few people in the Florida panhandle knew what they were – unless they had moved here from the Mid-Atlantic states.  Since we initiated the Panhandle Terrapin Project in 2005 many more now have heard of this brackish water turtle.

Ornate Diamondback Terrapin (photo: Dr. John Himes)

Diamondback terrapins are relatively small (10 inch) turtles that inhabit brackish environments such as salt marshes along our bays, bayous, and lagoons.  They have light colored skin, often white, and raised concentric rings on the scales of their shells which give them a “diamond-backed” appearance.  Some of them have dark shells, others will have orange spots on their shells.

The first objective for the project was to determine whether terrapins existed here, there was no scientific literature that suggested they did.  We found our first terrapin in 2007, and this was in Santa Rosa County.  We have since had at least one verified record in every panhandle county – diamondback terrapins do exist here.

The second objective was to locate their nesting beaches.  Terrapins live in coastal wetlands but need high-dry sandy beaches to lay their eggs.  Volunteers began searching for such and have been able to locate nesting beaches in Escambia, Santa Rosa, Okaloosa, Bay, and Gulf counties.  We continue to search in the other counties, and for additional ones in the counties mentioned above.  Once a nesting beach has been identified, volunteers conduct weekly nesting surveys, providing data which can help calculate the relative abundance of terrapins in the area.

Tracks of a diamondback terrapin.
Photo: Terry Taylor

The third objective is to tag captured terrapins to determine their population, where they move and how they use habitat.  We initially captured terrapins using modified traps and marking them using a file notching system.  We then partnered with a research team from the U.S. Geological Survey and now include passive integrated transponder tags (PIT tags) that help identify individuals, satellite tags that can be detected from satellites and track their movements, and recently acoustic tags which can also track movement.

The fourth objective is to collect tissue samples for genetic studies.  This information will be used to help determine which subspecies of terrapins are living in the Florida panhandle.

As we move into the summer season, more people will be recreating in our bays and coastal waterways.  If you happen to see a terrapin, or maybe small turtle tracks on the beach, we would like you to contact us and let us know.  You can contact me at roc1@ufl.edu.  Terrapins are protected in Florida and Alabama, so you are not allowed to keep them.  If you are interested in joining our volunteer team, contact me at the email address provided.

Marine Creatures of the Northern Gulf – Jellyfish

Marine Creatures of the Northern Gulf – Jellyfish

Many of the creatures we have written about in this series to this point are ones that very few people have ever heard of.  But that is not the case with jellyfish.  Everyone knows about jellyfish – and for the most part, we do not like them.  These are the gelatinous blobs with trailing tentacles filled with stinging cells that cause pain and trigger the posting of the purple warning flags at the beach.  They are creatures that many place in the same class as mosquitos and venomous snakes – why do such creatures even exist.  But exist they do and there are plenty in the northern Gulf – more than you might be aware of.

Jellyfish are common on both sides of the island. This one has washed ashore on Santa Rosa Sound.

The ones we are familiar with are those that are gelatinous blobs with trailing tentacles – called medusa jellyfish.  These include the common sea nettle (Chrysaora).  Sea nettles have bells about 4-8 inches in diameter (though they are larger offshore).  The bell has extended triangle markings that appear red and tentacles that can extend several feet beneath/behind the bell.  The tentacles are armed with nematocyst – cells that contain a coiled “harpoon” which has a drop of venom at the tip.  They use these nematocyst to kill their prey – which include small fish, zooplankton, and comb jellies.  But they are also triggered when humans bump into them producing a painful sting.  Their prey is digested in a sack-like stomach called the gastrovascular cavity and waste is expelled through their mouth, because they lack an anus.  Though these animals can undulate their bells and swim, they are not strong enough to swim against currents and tides – and thus are more planktonic in nature.

Another familiar jellyfish is the moon jelly (Aurelia).  These are the larger, saucer shaped jellyfish that resemble a pizza with a clover leaf looking structure in the middle.  They can reach 24 inches in diameter across the bell which is often seen undulating trying to swim against the current and tide.  Their tentacles are very short – extending from the rim of the bell – but there are four large oral arms that are quite noticeable.  The oral arms also possess nematocyst for killing prey.  Their prey includes mostly zooplankton and other jellyfish.  Like their cousins the sea nettles, moon jellies are planktonic in nature and are often found washed ashore during high energy days.  Some say the pain from this jellyfish is minimal, others feel a lot of pain.

The remnants of moon jellyfish near a ghost crab hole.
Photo: Rick O’Connor

Though there are many others, our final familiar jellyfish would be the Portuguese man-of-war (Physalia).  If you have never seen one, you most likely have heard of them.  These are easy to identify.  They produce a bluish colored gas filled balloon like sack that floats on the surface and extends above water to act as a “sail”.  This gas filled sack is called a pneumatophore and helps move the animal across the Gulf.  Extending down from this pneumatophore are numerous purple to blue to clear colored tentacles.  You would think the pneumatophore would be the bell of the jellyfish and the tentacles of similar design as to the ones we mentioned above – but that would be incorrect.  The tentacles are actually a colony of small polyp jellyfish connected together – it is not a true jellyfish (as we think of them).  The stomachs of these individual polyps are connected and as one kills and feeds, the food passes throughout the colony to nourish all.  In order to feed the whole colony, you need larger prey.  To kill larger prey, you need a more toxic venom, and PMOW do have a very strong toxin.  The sting from this animal is quite painful – though rare, it has even killed people.  This jellyfish should be avoided.  As with other jellyfish, they often wash ashore, and their stinging cells can still be triggered.  Do not pick them up.

There is another form of jellyfish found here that is not as well known.  They may be known by name, but not as jellyfish.  They are called polyp jellyfish and instead of having an undulating bell with tentacles drifting behind, they are attached to the seafloor (or some other structure) and extend their tentacles upward.  They look more like flowers and do not move much.  Examples of such jellyfish include the tiny hydra, sea anemones, and corals.  As with their medusa cousins, they do have nematocysts in their tentacles and can provide a painful sting, though some produce a mild toxin, and the sting is not as painful as other jellyfish.  Many of these polyp jellyfish are associated with coral reefs.  Though coral reefs are common in tropical waters, they do occur to a lesser extent in the northern Gulf.

The polyp known as Hydra.
Photo: Harvard University.

We will complete this article with a group of jellyfish that do not have nematocysts and, thus, do not sting – the comb jellies.  Though many species of comb jellies have trailing tentacles, the local species do not.  When I was young, we called them “football jellyfish” because of their shape – and the fact that you could pick them up and throw them to your friends.  I have also heard them called “sea walnuts” because of their shape.  A close look at this jellyfish you will see eight grooves running down its body.  These grooves are filled with a row of cilia, small hairlike structures that can be moved to generate swimming.  The cilia move in a way that they resemble the bristles of a comb we use for combing our hair.  You have probably taken your thumb and run it down your comb to see the bristles bend down and back into position – sort of like watching the New York Rockettes high kick from one end of their line to the other – this is what the cilia look like when they are moving within these grooves – and give the animal its common name “comb jelly”.  Since they do not have nematocysts, they are in a different phylum than the common jellyfish.  They feed on plankton and each other and can produce light – bioluminescence – at night.

Though not loved by swimmers in the northern Gulf, jellyfish are interesting creatures and beautiful to watch in public aquaria.  They have their bright side.

Comb jellies do not sting and they produce a beautiful light show at night.

 

 

References

Atlantic Sea Nettle. Aquarium of the Pacific. https://www.aquariumofpacific.org/onlinelearningcenter/species/atlantic_sea_nettle1.

Moon Jellyfish. Animal Diversity Web. University of Michigan Museum of Zoology. https://www.aquariumofpacific.org/onlinelearningcenter/species/atlantic_sea_nettle1.

Marine Creatures of the Northern Gulf – Sponges

Marine Creatures of the Northern Gulf – Sponges

Everyone has heard of sponges, and many know they grow in the ocean.  But fewer are aware that sponges are actually animals.  When we think of animals, we think of something that crawls around seeking food and laying eggs periodically.  Sponges are not like that.  They are “blob” looking creatures sitting on the ocean floor.  At first glance you might call them fungi, or maybe some weird form of algae – but they are animals, the simplest form of animal life on the planet.

A vase sponge.
Florida Sea Grant

What makes them animals is the lack of cell walls and chlorophyll.  Fungi also lack chlorophyll, but they do possess cell walls – so, are classified differently.  Because animals lack chlorophyll they cannot produce their own food – and must consume creatures in order to obtain their needed sugars.  So, what do sponges “hunt”?  They feed on plankton in the water column – many of the microscopic creatures we have already written about in this series.

The sponge body is basically a colony of individual ameboid and flagellated cells.  These small cells attach to the substrate and begin to reproduce sexually and asexually to form the colony.  As they grow, they form a series of pores found on the exterior of the mass.  The flagellated cells – called collar cells – move their flagella to generate a current.  This current draws in seawater – along with its plankton – where the colony, both the flagellated and ameboid cells, feed.  As the colony grows the exterior pores lead to channels and canals where the cells live and eventually empty into a larger cavity known as the atrium.  Here the water moves upward and exits the sponge through an opening called the osculum.  Waste from feeding exits the sponge through the osculum as well.

The anatomy of a sponge.
Flickr

As the colony grows it is supported by a series of tiny spike-like structures called spicules.  Spicules are made of different materials and are one method of separating and classifying the different sponges.  One group of sponges are known as the calcareous sponges – their spicules are made of calcium carbonate and are rough to the touch.  Another group are known as the “glass” sponges – their spicules are made of silica and are sharp-prickly to the touch.  A third group are known as the bath sponges – their spicules are made of a softer material called spongin.  It is this third group that was used for centuries for both bathing and washing.

Glass sponges are beautiful.
Photo: NOAA

These simple creatures play an important role in the ecology of marine systems.  As filter feeders, they remove material from the water column improving water clarity and quality.  They remove excess nitrogen and play a role in the carbon cycle.  They provide habitat for numerous small marine creatures where they can hide from predators and find food.

Sponges need a hard substrate to grow on and thus are more abundant in the coral reefs of south Florida.  Locally I have only found them in the seagrass beds.  But there they do play the same ecological role you would find them doing on coral reefs.  They are one of the less encountered creatures of the northern Gulf.

The Striped Burrfish

The Striped Burrfish

Striped burrfish are fascinating to watch in the wild and in aquariums. Photo credit: Carrie Stevenson, UF IFAS Extension

I have a vivid memory of snorkeling the seagrass beds around Port St. Joe when I was an undergraduate marine biology student. Our field research lab involved completing a visual fish survey, using waterproof dive slates and pencils to record the number and species of any fish that swam past us. I was conducting my survey fairly rigorously until a 6” long striped burrfish (Chilomycterus schoepfi) moved into my field of vision. It hovered in front of me, looking over with its gigantic puppy-like eyes, and proceeded to gently nibble on everything in sight. There are very few fish one might characterize as “cute,” but this charismatic little guy was adorable. Completely abandoning the task at hand, I stopped counting other fish and proceeded to slowly swim behind this little burrfish as it fed and swam throughout the grass bed. It was completely unfazed by my presence—I stopped to watch while it ate, then used my flippers to slowly navigate behind when it started moving again. I must have followed this fish for 30 minutes, simply observing its behavior. I could have sworn it looked back and me and signaled, “come on!” with a fin every time it moved to another location. I’ve snorkeled countless times since then, but bonding with this little fish was such a singular experience that I can visualize it clearly almost 30 years later.

A Southern puffer (left) and striped burrfish (right) in side-by-side comparison. Photo credit: Carrie Stevenson, UF IFAS Extension

Hence, I’ve always had a soft spot for the striped burrfish. We occasionally pull juveniles up in a seine when taking groups out in the field, and they often puff up in response to the shock of being temporarily captured. Frequently misidentified as their Tetradont relatives, the Southern puffer (Spheroides nephelus), the burrfish is similar in size and habitat. However, they are fairly easy to differentiate by their dorsal color patterns. As the name implies, striped burrfish have brown stripes, while puffers have more of a mottled pattern. Both species have bright white countershading on their bellies (aka “ventral” side), helping them blend in with the sky above when viewed from below by potential predators. They also utilize similar defense mechanisms, filling their bodies with air or water when threatened so they physically expand, appearing bigger and more difficult to fit into a larger fish’s mouth. Burrfish also have rigid spines that point out from their bodies when in self-defense mode. This adaptation makes them more complicated to digest for a would-be attacker. Many members of this Order of fishes produce a dangerous neurotoxin, further deterring predatory attacks.

Striped burrfish expand their bodies to twice normal size when threatened. Photo credit: NOAA

To the human observer, it’s anything but intimidating to see a fish transform into a ping pong ball with fins, but the strategy must work because there are around 120 species of puffers and porcupinefish in the Order Tetraodontiformes that use this technique.

As young burrfish mature, their front teeth fuse into a tough “beak,” which they use to break through the shells of their prey. As I experienced while snorkeling, burrfish are slow swimmers, using their wide terminal mouths and large jaws to nibble on shellfish, sea urchins, and barnacles.  Their characteristic body shape is boxy, built not for speed but to cruise reefs and grassbeds. Armored with spikes, poison, and the element of surprise, striped burrfish can afford to take their time and relax in the water.

More Information on Establishing Cool Season Wildlife Food Plots in the Panhandle

More Information on Establishing Cool Season Wildlife Food Plots in the Panhandle

Recently Jennifer Bearden, our Agriculture & Natural Resource Agent in Okaloosa County wrote a great article on “Common Wildlife Food Plot Mistakes”. The following information is a mere supplement in establishing food plots. Planting wildlife forages has become a great interest in the Panhandle. North Florida does have its challenges with sandy soils and seasonal patterns of lengthy drought and heavy rainfall. With that said, varieties developed and adapted for our growing conditions are recommended. Forage blends are greatly suggested to increase longevity and sustainability of crops that will provide nutrition for many different species.

Hairy Vetch – Ray Bodrey

In order to be successful and have productive wildlife plots. It is recommended that you have your plot’s soil tested and apply fertilizer and lime according to soil test recommendations. Being six weeks from optimal planting, there’s no time like the present.

Below are some suggested cool season wildlife forage crops from UF/IFAS Extension. Please see the UF/IFAS EDIS publication, “A Walk on the Wild Side: 2024 Cool-Season Forage Recommendations for Wildlife Food Plots in North Florida” for specific varieties, blends and planting information. https://edis.ifas.ufl.edu/pdffiles/AG/AG13900.pdf

Winter legumes are more productive and dependable in the heavier clay soils of northwest Florida or in sandy soils that are underlain by a clay layer than in deep upland sands or sandy flatwoods. Over seeded white clover and ryegrass can grow successfully on certain flatwoods areas in northeast Florida. Alfalfa, clovers, vetch and winter pea are options of winter legumes.

Cool-season grasses generally include ryegrass and the small grains: wheat, oats, rye, and triticale (a human-made cross of wheat and rye). These grasses provide excellent winter forage and a spring seed crop which wildlife readily utilize

Brassica and forage chicory are annual crops that are highly productive and digestible and can provide forage as quickly as 40 days after seeding, depending on the species. Forage brassica crops such as turnip, swede, rape, kale and radish can be both fall- and spring-seeded. Little is known about the adaptability of forage brassicas to Florida or their acceptability as a food source for wildlife.

Deer taking advantage of a well maintained food plot. Photo: Mark Mauldin

For more information, contact your local county extension office.

UF/IFAS Extension is an Equal Opportunity Institution.

The Tale of the Atlantic Tripletail

The Tale of the Atlantic Tripletail

The Atlantic Tripletail (Lobotes surinamensis) is a very prized sportfish along the Florida Panhandle. Typically caught as a “bonus” fish found along floating debris, the tripletail is a hard fighting fish and excellent table fare. Just as the name implies, this fish is equipped with three “tails” that help aid it in propulsion; and also help contribute to their strong fighting spirit. In addition to the caudal fin, tripletail have very pronounced “lobed” dorsal and anal fin soft rays that sit very far back on the body, giving it the appearance of three tails (triple-tails).

Tripletail Art

Atlantic Tripletail (Lobotes surinamensis) – FWC, Diane Rome Peebles 1992

Tripletail are found in tropical and subtropical seas around the world (except the eastern Pacific Ocean) and are the only member of their family found in the Gulf of Mexico. Tripletail can be found in all saltwater environments, from the upper bays to the middle of the Gulf of Mexico. In the Florida Panhandle, tripletail begin to show up in the bays beginning in May and can be found up until October/November. They are masters of disguise, usually found floating along floating debris, crab trap buoys, navigation pilings, and floating algae like Sargassum. When tripletail are young, they are able to change their colors to match the debris, albeit it is usually a variation of yellow, brown, and black. Adult tripletail can change color as well, but the coloration is not as vibrant as the juveniles. Floating alongside debris and other floating materials protects them from predators and gives them food access. Small crustaceans, like shrimp and crabs, and small fish will gather along the floating debris, looking for protection, giving the camouflaged tripletail an easy meal.

Tripletail or leaf?

Baby Tripletail or Leaf?  – Thomas Derbes II

Tripletail are opportunistic feeders that are what I classify as “lazy hunters.” Tripletail will hang out along any floating debris and wait for the food to come to them. They typically will not chase their prey items too far and will abandon the hunt if they expend too much energy. Since they are opportunistic feeders, their diet varies widely, but they cannot resist a baby blue crab, shrimp, or small baitfish like menhaden (Brevoortia patronus) that might visit their floating oasis. When further offshore, it is not uncommon to find many tripletail “laying out” on sargassum or floating debris. I personally have seen a dozen full-sized tripletail inside of a large traffic barrel 25 miles offshore that saved a skunk of a deep-dropping fishing trip.

Oyster Farmer holding a Tripletail fish

Tripletail Caught Off An Oyster Farm – Brandon Smith

When targeting tripletail, anglers will typically sit at the highest point of the boat (some anglers have towers for spotting tripletail) and cruise along floating crab trap buoys, pilings, and sometimes oyster farms looking for Tripletail. These fish are very easily spooked, and a slow, quiet approach is best. Once in casting distance, toss your preferred bait (I typically want to have baby crabs or live shrimp when targeting tripletail) close to the floating structure, but not too close to spook the fish. You can usually watch the fish eat your bait (another added bonus) and once you set the hook, the fight is on! In the state of Florida, tripletail must be a minimum of 18 inches and there is a daily bag limit of 2 fish per person. Be very careful handling tripletail as they have very sharp dorsal and anal fins and their operculum (gill cover) is also very sharp with hidden spines.

So next time you’re out fishing and see something floating, make sure you give it a good look over. There might be a camouflaged tripletail that you can add to your fish box!

tripletail fisherman

Tripletail Caught While Working Oyster Gear – Thomas Derbes