Pompano?! More like Pompa-YES! Growing up in the Panhandle of Florida, I was exposed to many great fishing seasons and opportunities, from the Cobia (Rachycentron canadum) run in the spring to the “Bull” Red Drum (Sciaenops occelatus) run of the fall, but my absolute favorite season was the Florida Pompano (Trachinotus carolinus) run on the beaches. While I enjoyed being on the boat scouring the beaches with a small bucktail jig, casting at sliver flashes in the cuts of the sandbar, I had my most memorable trips on the beach with a few rods, sand spikes, and a “flea rake.” There were no bad days on the beach (as they say, it’s better than a day in the office), and when you happen upon a honey hole, it makes for an incredible day with very little effort and usually an incredible dinner to follow. Since we are rapidly approaching peak pompano season, I will pay homage to the “Silver Surfers of the Emerald Coast” with a little overview of the life of a Florida Pompano.
Beach Fishing for Florida Pompano is for Everyone, Young and Old – Thomas Derbes II
Florida Pompano have a very wide range, from Massachusetts to Brazil, and are a member of the family Carangidae (aka the Jack Family). It is a very popular sport and commercial fishery, and its rapid growth rate makes it a prime candidate for aquaculture. Florida Pompano are highly migratory fish, and they can run from the Florida Keys all the way to Texas and back in a season. In the Florida Panhandle, the Florida Pompano run starts in April/May lasting until July, with a bonus fall run in October/November when they are returning south. When fishing off the sandy beaches of the Florida Panhandle, you can run into its cousins the Permit (Trachinotus falcatus) and Palometa (Trachinotus goodei) who often get mistaken for a Florida Pompano. Another thing they have in common with Florida Pompano is their love of crustaceans including the Mole Crab (aka Sand Fleas) (Emerita portoricensis) and Atlantic White Shrimp (Litopenaeus setiferus).
Just like most members of the family Carangidae, Florida Pompano are considered “batch spawners.” A batch spawner is when a female releases her eggs into the water column and a male simultaneously releases his sperm into the water column. Female Florida Pompano can release upwards of 800,000 eggs per spawning season, and Florida Pompano typically head offshore in early spring to October in the Gulf of Mexico to spawn, and their juveniles return to the beach to grow along the shoreline. Florida Pompano can reach an aquaculture harvest size of 12 inches within one year, and males reach maturity in 1 year whereas females mature after 2 to 3 years.
Florida Pompano Eggs 12 Hours Post Fertilization – Thomas Derbes II
When it comes to table fare, Florida Pompano ranks very high on my personal fish list, and many chefs love serving pompano at their restaurants due to the great, mild taste and fillets that are of even thickness. Their diet of crustaceans helps yield a buttery, almost crab flavor and the meat is very flaky and white. There are many preparation techniques for Florida Pompano, from grilled whole to pan-fried, and pompano have even inspired their own cooking technique, “Pompano en Papillote,” or baking pompano in parchment paper.
Beautiful Florida Pompano Caught Off Pensacola Beach, Florida – Thomas Derbes II
When fishing for Florida Pompano off the beach, most anglers employ a large rod (usually a 10ft rod) with a 20lb fluorocarbon double drop loop rig and pyramid weight. The larger rod allows for maximum casting distance from the beach, giving beach anglers a chance to reach behind the first sandbar. Most anglers will bring either fresh dead shrimp or a flea rake with them to catch the prized bait, mole crabs. Pro tip, when casting out the rods, make sure you have a bait close to the shore in the “trough” and not just past the sandbar. (Learn More About Rigging Here!) If you plan to harvest a Florida Pompano, make sure you check your local regulations. In the Florida Panhandle, Florida Pompano must be 11 inches (fork-length) or larger with a daily limit of 6 per angler.
My nephew showing off his prized Florida Pompano – Zach Saway
I hope you have enjoyed this profile for the Florida Pompano. Now is the time to get your rods out of storage and ready to hit the beach!
I am sure everyone has noticed how cold this winter has been. We have had multiple days in the 20’s here in the Florida panhandle, even some snow flurries near Pensacola. I was first told this may happen by a Sea Grant colleague of mine who works with oyster farmers. Six months ago, he said the Farmer’s Almanac mentioned this would be a colder than normal winter. A few weeks later a Master Naturalist mentioned that if it was heavy “mast season” (lots of acorns on the ground) it would be a colder winter. We certainly had a heavy mast season in Pensacola this year, acorns were EVERYWHERE. And here we are. As I type this it is 27°F outside.
Though we do not see snow as often as Colorado, the panhandle does see snow from time to time.
Photo: Rick O’Connor
This past week I was at a Sea Grant meeting. We were discussing this cold and another colleague mentioned that it was an El Nino year. That’s right… it is an El Nino year, and many know that the weather does change when this occurs.
I first heard of the El Nino shortly after receiving my bachelor’s degree. I was teaching at Dauphin Island Sea Lab, and we had a video series on oceanography and one episode discussed it. It explained that commercial fishermen in Peru were the first to notice it over a century ago.
Off Peru’s coast is a large ocean current that originates in the Antarctic, flows north towards the equator passing the west coast of South America along the way. The water is cold and full of life. The Andes Mountains also run north-south along the coast. Cold air at the top of the mountains runs down towards the coast and offshore. As it blows offshore, it “pushes” the surface water of the ocean offshore as well. This generates an upwelling current moving from the ocean floor towards the surface, bringing with it nutrients from the sediments below. This nutrient reach seawater, mixing with the highly oxygenated cold water, and the sun at the surface creates the perfect environment for a plankton bloom, and a large bloom she is. This large bloom attracts many plankton feeding organisms, including the commercially sought after anchovies and sardines. This in turn supports the tuna fishery that comes to feed on the small fish. These are some of the most productive fisheries on the planet.
Based on records kept by Peruvian fishermen, every three to seven years the surface waters would warm, and the fish would go away. It was lean times for them. When it did occur, it would do so around Christmas time. So, the fishermen referred to it as the El Nino – “the child”.
Based on the video episode we showed the students, others began to notice warming along the western Pacific and realized it was a not a local event, but a global one. A high school friend of mine does sound for nature films and one of his first projects was to video the effects of the El Nino on the seal nesting season in California. As in Peru, the cold waters become warm, the bloom slows and the fish go away, with less fish the mother seals have no food so, cannot produce milk for their newborns waiting on the beach. As horrible as it sounds, and was to watch in Mike’s film, the mothers eventually abandon the newborns to starve.
The video we showed at Sea Lab followed marine biologists studying corals along the western coast of Central America. Here the waters were warming as well, warmer than normal, and the corals were stressed and dying. With orbiting satellites now in place oceanographers were able to view this event from space and watch the entire thing unfold. These images showed that during a normal year the western Pacific had cold water along California and much of South America. The waters along western Central America were warm. But during an El Nino year, warm water replaced the cold, particularly near Peru. Scientists were able to connect several events to El Nino seasons. Increases in wildfires in the western US, people were viewing the northern lights at lower latitudes, droughts occurred where it was usually wet, floods occurred where it was usually dry, and during one El Nino season the Atlanta Falcons made it to the NFL playoffs. Weird things were happening.
The obvious question for science is what drives these El Nino events?
It is understood that our weather and climate are driven by ocean currents. The “dry air” everyone talks about in the western US is driven by the cold California Current. Likewise, the “humid air” of the southeastern US is driven by the warm Gulf Stream. If you alter these currents, you alter the weather and climate of the region. How do you alter ocean currents?
Warm water in the eastern Pacific indicates an El Nino season.
Graphic: NOAA
In the 1980s, when I was teaching at Dauphin Island Sea Lab, the video suggested a connection to sunspots on the surface of the sun. At the time, they were not sure whether the increased sunspot activity triggered the El Nino, or whether there was something else going on, but there was a correlation between the two.
One explanation comes from a textbook on oceanography I used when I was teaching marine science during the 1990s1. It explains the event as such…
During “normal years” cold water from the Arctic and Antarctic runs along the western coasts of North and South America – both heading towards the equator. Once there, the earth’ rotation moves this water westward towards Australia and Indonesia, warming the water as it goes.
Apparently, the ocean currents cannot transport and disperse these warm waters effectively once they reach the western Pacific. Thus, warm water begins to build there.
This accumulating warm water seems to reverse the trade winds that normally flow from the eastern Pacific to the western along the equator. This wind reversal occurs between November and April. It mentions that in the late 1990s the cause of this wind reversal was not well understood.
This wind reversal is often followed by the development of twin “super typhoons” (very strong typhoons) north and south of the equator.
The extreme warm water in the western Pacific affects the weather in the region and this “heat mass” expands spatially. During this expansion, the high-pressure system that sits over the eastern Pacific, bringing them the dry air we know California for, weakens. At the same time, the normal low-pressure system over the western Pacific weakens and, in a sense, things are flipped. This atmospheric change is called the Southern Oscillation, and the entire event was termed the El Nino Southern Oscillation (ENSO).
The power of the typhoons moves warm water from the western Pacific across the equator to the America’s. The waters there warm and the historic El Nino occurs. This movement takes several months.
The El Nino will persist for one to two years. When the warm water eventually releases its heat, the waters cool, and normal conditions return. Until the next El Nino forms.
In the 1990s they had already noticed an increase in the frequency of El Ninos (based on old fishermen’s logs). They suggest climate change may be driving this.
During El Nino years weather patterns change globally, as mentioned above. This altering of the weather impacts all sorts of biological processes, as mentioned above.
Often, the “return” of colder water along the western Pacific “overshoots” normal temperatures and the ocean becomes colder than normal. This has been termed the La Nina.
I kind of imagine the whole process like a sloshing pool of water flowing towards one end of the pool, bouncing off and sloshing back to the other. But instead of water “sloshing around” it is temperatures.
But this was 1996. Have scientists learned anymore about this event?
Not much has changed in their explanation, other than we are much better at predicting when they will happen and alert the public so that farmers, fishermen, fire fighters, etc. are prepared. They do seem to be increasing in frequency.
For the 2024 El Nino, which NOAA began alerting the public in the summer of 2023, they are predicting it to continue for several seasons2. There is no doubt that this winter is colder than normal. The Florida panhandle also experienced a drought this past fall. But… during most El Nino years, hurricanes are few in the Gulf of Mexico. We will see, and watch, how the rest of the year rolls out.
Reference
1 Gross, M.G., Gross, E. 1996. Oceanography; A View of Earth. 7th edition. Prentice Hall. Upper Saddle River, New Jersey. Pp 472.
2 El Nino / Southern Oscillation (ENSO) Diagnostic Discussion. Jan 11, 2024. National Weather Service Climate Prediction Center. National Oceanic and Atmospheric Association.
And it’s a good thing! Green gill oysters are prized in the oyster community. In the Carolinas and Northern France, green gill oysters are a seasonal, cherished crop and a product of the saying “You are what you eat!” The phytoplankton, Haslea ostrearia, is the typical culprit, and their distribution is measured by direct observation from plankton tows or the occurrence of green-gilled oysters. The exact distribution is unknown, but there are reports of H. ostrearia throughout the Atlantic, Pacific, and Indian oceans. Haslea ostrearia is a beautiful pennate diatom that contains a water-soluble blue pigment known as marennine (More Here). Marennine’s production is stimulated by long photoperiods, blue light, and high light/low cloud weather. It can also be released into the water and into the flesh of organisms (typically oysters) that consume them.
Fresh out of the water Grayson Bay Oyster with green gills! – Brandon Smith, Grayson Bay Oyster Company
Pensacola Bay, and surrounding areas, had a pretty mild fall in terms of rainfall, and the bays have turned a beautiful green-blue hue as the bays have risen in salinity and phytoplankton typically found in the Gulf of Mexico were able to survive. Brandon Smith, owner of Grayson Bay Oyster Company, was out working his farm January 7th, 2024, and sent a text to me saying “take note of the green gills,” and I was very shocked and happy to see actual, green-gilled oysters in our local waterways. He graciously harvested a few dozen to examine (and let me taste test), and I was able to confirm the presence of green gills in the oysters. After further research on H. ostrearia, it seems as though the pennate diatom made it into our bays and is the culprit of this wonderful surprise.
A local Grayson Bay Oyster displaying green-gills – Thomas Derbes II
When I shucked my graciously donated oysters from Grayson Bay, I was reminiscing on the first time I came across green-gilled oysters. The first batch of green gill oysters I ate came from an oyster farm in North Carolina called N. Sea Oyster Company. Their green-gilled beauties “Divine Pines” were requested by a wedding I was catering for, and I was able to slurp down one to get talking and tasting notes. The seasonal Divine Pines offered a sweet yet salty taste and became one of my favorite out-of-area oysters to serve at events and to personally consume. While beautiful, the green-gilled oysters are usually only found in the fall/winter months. These green-gilled Grayson Bays were very comparable and offered a salty yet very sweet and minerally finish. The H. ostrearia is responsible for not only the green gills, but the sweet tasting notes, and I highly recommend adding any green-gilled oyster to your fall/winter raw bar selection.
References:
Turpin, Vincent & Robert, J-M & Philippe, Goulletquer & Massé, Guillaume & Rosa, Philippe. (2008). Oyster greening by outdoor mass culture of the diatom Haslea ostrearia Simonsen in enriched seawater. Aquaculture Research. 32. 801 – 809.
When you sit down and enjoy some fresh, farmed oysters during the summer, you might notice that the oyster is not watery but yet plump and full of meat, unlike the usual wild oysters. These farmed oysters are very special and are called “triploid oysters.” What makes an oyster a triploid? Well, it all starts in the oyster hatchery and involves using tetraploid male oysters to breed with diploid female “wild” oysters.
Before we dive into triploids, let’s go over some definitions. A diploid organism contains two sets of chromosomes. As humans, we have two sets of chromosomes, and the pair is formed by a chromosome from the mother and a chromosome from the father. Triploid organisms contain three sets of chromosomes and while very rare, triploidy does happen in the wild. Tetraploid organisms have four sets of chromosomes and are usually only formed in a laboratory setting using pressure or other means to cause tetraploidy. When you breed a tetraploid oyster with a diploid oyster, the result is a triploid oyster.
A hatchery worker keeping an eye on spawning chambers with diploid oysters – Thomas Derbes II
Inside of an oyster hatchery, you will see many small breeding chambers for the oysters. When a hatchery decides to spawn oysters, they place a single wild diploid oyster in each chamber. During spawning, the hatchery will introduce a cycle of cold then warm water and this cycle is repeated until a spawn is triggered. Hatchery workers will closely watch the oysters and will shut off the water supply to any oyster that has spawned so they can trap the gametes in the chamber. You can determine the sex of an oyster by watching it spawn; a female oyster “claps” out her eggs while a male opens slightly and releases sperm into the water. When spawning for triploid oysters, the hatchery workers will only obtain the eggs from female diploid oysters and discard any diploid sperm to avoid cross contamination. During the spawn, a worker will strip the sperm from male tetraploid oysters and once all female diploids are done spawning, they will introduce the tetraploid sperm to the diploid eggs. After 30 minutes, fertilization rates are calculated and stocking densities are formed.
3-month-old triploid seed – Thomas Derbes II
Why Would a Farmer Want to Grow a Triploid Oyster?
There are many benefits for a farmer to raise triploid oysters. First and foremost, triploid oysters are sterile. This is a major benefit for the farmers during the summer months. During the summer, wild diploid oysters spawn, and when they spawn, the meat turns very thin and watery. In the Panhandle of Florida, the harvest of wild oysters is prohibited in the summer and only farmed oysters can be harvested.
Another added benefit is the increased growth rate of a triploid oyster compared to a diploid oyster. As mentioned above, triploid oysters lack the ability to spawn. Since a triploid oyster does not have to spend energy producing gametes, it puts all of its energy into growing its shell and meat. A typical diploid oyster could take more than two years to reach harvest size, where a triploid oyster can reach harvest size within 8 months (commonly 12-24 months but there are usually some fast growers in a batch).
There are more benefits of triploid oysters including selective breeding for disease resistance and environmental sustainability. With the use of triploid oysters for oyster farming, wild stocks go relatively unaffected and help contribute to more sustainable aquaculture practices. I hope this brief explanation of triploid oysters will help you understand more about the somewhat unknown world of oyster aquaculture. With demand for oysters on the rise, triploid oysters hold great promise in meeting the needs of an ever-growing oyster aquaculture industry.
Health advisories issued by the Department of Health (DOH) due to high levels of fecal bacteria have been a problem for some parts of the Pensacola Bay system for decades. Though most of the samples collected near our beaches rarely require them (usually between 0-5%) the bayous near downtown have been at, or above, 30% of the samples. Bayou Chico is often between 50-60% of the samples. Fecal bacteria have been such a problem in Bayou Chico that it was required to adopt a state Basin Management Action Plan (BMAP) to rectify the problem.
Closed due to bacteria.
Photo: Rick O’Connor
I began following the health advisory reports provided by DOH’s Healthy Beaches Program in 2012. As mentioned above, swimming beaches near our islands rarely have health advisories issued. The problem was with the three bayous near downtown. In 2012 all three consistently reported 30%, or more, of their samples required an advisory to be issued.
To rectify the problem the city and county have been doing a lot of work replacing old infrastructure that allowed sewage to leak from pipes or reach surface waters through sanitary sewage overflows. Many communities around these bayous are converting from old septic systems to sewer, the communities around Bayou Texar are now all on sewer. These same efforts are occurring along the north shore of Bayou Grande, and in neighborhoods around Bayou Chico. Between 2012 and the present, I have seen the frequency of health advisories decline some. Bayou Texar hovers around 30%, some years they are below, others above the mark. In recent years Bayou Grande has consistently been between 25-30%. Bayou Chico has declined some but is usually at or above 30%.
In 2023, for the first time since I began following this, all 13 sites monitored in Escambia County were below 30%.
2023
Body of Water
Number of samples taken
Percent of samples requiring an advisory
Bayou Texar
45
22
Bayou Grande
18
22
Bayou Chico
19
21
Bruce Beach
46
9
Big Lagoon State Park
19
5
Sanders Beach
46
4
Casino Beach
18
0
Park East
18
0
Park West
18
0
Quietwater Beach
18
0
Ft. Pickens
7
0
Johnson’s Beach
7
0
Opal Beach
7
0
It is worth noting that our rainfall was low this year as well. Historically, Pensacola received 60-61 inches of rain a year. Over the last decade this has increased to 70-71 inches. The current rainfall total for 2023 is 58 inches. Many studies show a strong correlation between rainfall and the number of advisories issued. It may very well be that the reduction in rainfall played a large part in the reduction of health advisories. Despite a lot of progress repairing infrastructure, and this effort needs to continue, there are still some issues.
Along with the city and county retrofitting old infrastructure, there are things area residents can do as well.
Many of these are related to poorly maintained septic systems throughout the area. If you are a septic system owner and would like to learn more on how to properly maintain your septic system, contact your county extension office.
If you are a septic system owner and are interested in converting to sewer to reduce the need for maintenance, contact our county extension office. For some communities in the Pensacola area, there is a cost share program with DOH to help make this conversion.
If you are on a sewer system in one of the older parts of town, the pipe leaving your house and connecting to the line under the street is your responsibility and may need repairing or replacing. Many plumbing companies have a television scope that can examine this line and provide you feedback.
For everyone, be careful what your pour down the drain. Fats, Oils, Grease, and even milk can clog the pipes and cause sanitary sewage overflows or backups in the system. Heavy rains only make this worse. In the Pensacola area the Emerald Coast Utilities Authority (ECUA) provides free plastic gallon jugs to place your cooking oil and grease in and, when full, can be swapped for another at several locations around town. To find the closest disposal site to you visit https://ecua.fl.gov/live-green/fats-oils-grease.
The FOG gallon containers are found in these metal cabinets placed around the county.
Photo: Rick O’Connor
Despite low rainfall this year, it is still good that all 13 sites were below 30% this year. With the help of the local governments, agencies, and residents, hopefully it will remain so.
The information provided here can be used by communities all along the Florida panhandle. High fecal bacteria count, and health advisories are not limited to the Pensacola Bay System. Contact your county extension office for more information on how you can help to reduce health advisories in your area.