Select Page
Marine Creatures of the Northern Gulf of Mexico – Viruses

Marine Creatures of the Northern Gulf of Mexico – Viruses

We are going to begin this series of articles with a “creature” that some do not consider alive – viruses.  While studying marine science in college, and my early days as a marine science educator, there was a debate as to whether viruses were actually alive and should be included in a biology course.  A quick glance at the textbooks of the time shows they were often omitted – though they were included in my microbiology class.  Why were they omitted?  Why did some consider them “non-living creatures”?

The coronavirus next to a strand of DNA.
Image: Florida International University.

Well, we always began biology 101 with the characteristics of life.  Let’s scan these characteristics and see where viruses fit.

  1. Made of cells. This is not the case for viruses.  A typical cell will include a cell membrane filled with cytoplasm and a nucleus, which is filled with genetic material (chromosomes containing DNA and RNA).  An examination of a virus you will find it is either DNA or RNA encapsulated in a protein coat.  It is “nucleus-like” in nature.  Most cells run between 10-20 microns in size.  A typical nucleus within a mammal cell will run between 5-10 microns.  A typical virus would be 0.1 microns – these are tiny things – MUCH smaller than a cell.
  2. Process energy. Nope – they do not. Most cells utilize energy during their metabolism.  Viruses do not do this.
  3. Growth and development. Nope again. They “spread”, which we discuss in a moment, but they do not grow.  We are now 0-3.
  4. Homeostasis. Homeostasis is the movement of material and environmental control to remain stable – and viruses do not do this.
  5. Respond to stimuli. Yes… here is one they do. Studies show that viruses do respond to their chemical and physical environment.
  6. Metabolism. As mentioned above, this would be a no.
  7. Adaptation.   Studies show that through very rapid reproduction they can adapt to the changing environment they are in.
  8. Reproduce. This is a sort of “yes/no” answer.  They do reproduce (as we say – “spread”) but they do not do this on their own.  They invade the nucleus within the cells of their host and replace their genetic material with that of the host creature.  Then, during cell replication within the host, new viruses are produced and “spread”.

So, you can see why there is a debate.  Of the eight common characteristics of life, viruses possess only three – and one of those can only be achieved with the assistance of a host creature.  Now the question would be – do be labeled as a “creature” do you need ALL eight characteristics of life?  Or only a few?  And if only a few – how many?  Because of this most biologists do not consider them alive.

During one class when we were discussing this a student made a comment – “don’t we KILL viruses?  If so, then it must be alive first”.  Point taken – and we should understand the phrase “kill a viruses” does not mean literally killing.  It is a phrase we use.  Though some argue we do kill viruses and thus…

Another point we could make here is that all life on the planet has been classified using a system developed by the Swedish botanist Carlos Linnaeus.  Each creature is placed in a kingdom, then phylum, class, order, family, genus, and eventually a species name is given.  We “name” the creature using its genus and species name – Homo sapiens for example.  We do not see this for viruses.

All that said, both the National Oceanic and Atmospheric Administration and the National Institute of Health indicate the “most common form of life in the sea are viral-like particles” – with over 10 million in a single drop of seawater.  We will leave the debate here.  Your thoughts?

Reducing Health Advisories in Area Waterways: Part 1 – Maintaining Your Septic System

Reducing Health Advisories in Area Waterways: Part 1 – Maintaining Your Septic System

One of the top concerns with residents in our communities is water quality.  Surveys I have conducted with the public support this statement.  One of the top concerns with water quality in the coastal areas is health advisories.  These are issued when concentrations of selected fecal bacteria are too high.

In coastal areas, the selected bacteria are Enterococcus.  It is important to note that Enterococcus bacteria are found in the digestive systems of birds and mammals.  So, its presence does not automatically mean there is human waste in the water.  However, there are pathogens associated with bird and mammal waste humans should be concerned about.  And very high concentrations are most likely due to human waste.  Science is working on additional methods to confirm high levels of Enterococcus are human.  It is assumed that these will one day be used.

Enterococcus bacteria are used in coastal waters due to their ability to tolerate higher salinity.  Some species, such as E. coli, that are used in freshwater systems die in saline ones.  This suggests that the waste is not there, when in fact it is.  It is also important to know that Enterococcus bacteria in themselves are not health concern for us.  They are in our digestive tracts.  But their presence in the water indicates that waste is present and there are pathogens in this waste that are of concern – hence the advisories issued.

In this series we will look at three methods we can use to help reduce human waste from entering our local waterways.  Those are (1) maintaining your septic system, (2) converting your septic system to sewer, and (3) maintaining your sewer lines.  We will begin with maintaining your septic system.

Septic systems have been used in rural and suburban communities where sewer systems have not been available for decades.  Even today, the growth of new neighborhoods is outpacing the sewer infrastructure to support them.  Many of these new communities are using septic systems.  If properly placed and maintained, septic systems can work well. But many are not placed in good locations, and most are not maintained.

A conventional septic system is composed of a septic tank and a drainfield, where most of the wastewater treatment takes place. Image: US EPA

The system begins with the water leaving your home and entering a large tank made of concrete, fiberglass, or polyethylene buried in the yard.  The average size of these tanks is 1000 gallons, but – depending on the number of bedrooms and bathrooms in the house, they could be larger.  Here the sewage sits.  Over time the solid waste will settle on the bottom (sludge) while the fats, oils, and grease float to the surface.  The liquid layer in the middle (effluent) will flow from the tank into a series of smaller perforated drainpipes that slowly discharge into a drain field.  A properly designed drain field will have a layer of sand that will allow draining of the effluent to occur.

Let’s talk about how to maintain this system.

  1. Do not overload the system with too much water. The tank is designed for a specific number of bedrooms/bathrooms.  Overusing water can fill the tank and initiate leaking before the sewage has had time to settle.  Watch your water use.
  2. Watch what you are flushing down the drain. Fats, oils, grease, and even milk will solidify and clog the lines.  There are many products that describe themselves as “flushable”.  They are, but they are not biodegradable.  These two will cause clogs and backups in the system.  Some harsh cleaning products can harm the bacteria within the tank who are breaking down the waste – these should be avoided.  Also avoid using the garbage disposal.  Septic systems were designed for water and sewage, not garbage and food.  Compost your food waste instead.
  3. Periodically have your tank pumped and inspected. This is a step that many do not follow and can lead to leaking of untreated sewage into local waterways.  It is recommended that you have your septic tank pumped and inspected once every 3-5 years.  There are several businesses in your area who do this type of work.  They can also provide advice on how to better maintain your specific system.
  4. Protect your drain field. Do not drive over this area of your lawn.  Vehicles can compact the porous soil needed for efficient percolation and possible crack pipes.  Planting trees and shrubs in this area can introduce roots into the lines, plant shallow root plants only.  Design your landscape so that rainwater does not flow over the drain field during storms.  The draining of your system is designed to be a slow process, allowing both physical and biological treatment of the waste to occur before reaching any water source.  Rain and flooding conditions impede this from happening.

Developing a septic maintenance plan for your property can help reduce the number of health advisories your community will see.  For more information contact your county health department or extension office.

The Rare Coastal Dune Lakes of Walton County

The Rare Coastal Dune Lakes of Walton County

Western Dune Lake Tour

Walton County in the Florida Panhandle has 26 miles of coastline dotted with 15 named coastal dune lakes.  Coastal dune lakes are technically permanent bodies of water found within 2 miles of the coast. However, the Walton County dune lakes are a unique geographical feature found only in Madagascar, Australia, New Zealand, Oregon, and here in Walton County.

What makes these lakes unique is that they have an intermittent connection with the Gulf of Mexico through an outfall where Gulf water and freshwater flow back and forth depending on rainfall, storm surge and tides. This causes the water salinity of the lakes to vary significantly from fresh to saline depending on which way the water is flowing. This diverse and distinctive environment hosts many plants and animals unique to this habitat.

There are several ways to enjoy our Coastal Dune Lakes for recreation.  Activities include stand up paddle boarding, kayaking, or canoeing on the lakes located in State Parks.  The lakes are popular birding and fishing spots and some offer nearby hiking trails.

The state park provides kayaks for exploring the dune lake at Topsail. It can be reached by hiking or a tram they provide.

Walton County has a county-led program to protect our coastal dune lakes.  The Coastal Dune Lakes Advisory Board meets to discuss the county’s efforts to preserve the lakes and publicize the unique biological systems the lakes provide. Each year they sponsor events during October, Dune Lake Awareness month.  This year, the Walton County Extension Office is hosting a Dune Lake Tour on October 17th.  Registration will be available on Eventbrite starting September 17th. You can check out the Walton County Extension Facebook page for additional information.

The World of Worms – Part 3 Roundworms

The World of Worms – Part 3 Roundworms

Roundworms differ from flatworms in that… well… they are round.  You might recall from Part 1 of this series that flatworms were flat which helps with exchange of materials inside and out of the body.  Flatworms were acoelomates – they lack an interior body cavity and thus lack internal organs.  So, gas exchange (etc.) must occur through the skin.  And a flat body increases the surface area in order to do this more efficiently.

A common nematode.
Photo: University of Florida

But roundworms are round, which reduces this surface area and reduces the efficiency of material exchange through the skin.  Though gas exchange through the skin does happen, it is not as efficient.  So, there is the need for internal organs and that means there is a need for an internal body cavity to hold these organs.  But with the roundworms there is only a partial cavity, not a complete one, and the term pseudocoelomate is used for them.  Though the round body has adaptations to deal with gas exchange, it is a better shape for burrowing in the soil and sediment.

There are about 25,000 described species of roundworms, though some estimate there may be at least 500,000.  They are placed in the Phylum Nematoda and are often called nematodes.  Nematodes live within the interstitial spaces of soil, sediment, and benthic plant communities.  They have been found in the polar regions, the tropics, the bottom of the sea, and in deserts – they are everywhere.  They are usually in high numbers.  One square meter of mud from a beach in Holland had over 4,000,000 nematodes.  Scientists have estimated that an acre of farmland may have at least 1 billion of them.  A decomposing apple on the ground in an orchard had about 90,000 nematodes.  So, they are found everywhere and usually in great abundance.  There are parasitic forms as well and they attack almost all groups of plants and animals.  Food crops, livestock, and humans have made this group of nematodes a concern in our society.

Like many pseudocoelomates, nematodes have an anterior end with a mouth, but no distinct head – rather two tapered ends.  Most of the free-living nematodes are less than 3mm (0.1in), but some soil nematodes can reach lengths of 7mm (0.3in) and there are marine nematodes that can reach 5cm (2in.) – it is a group of small worms.

Roundworms usually need water in order to move, even the soil species.  They typically wriggle and undulate, similar to a snake, when moving and under a microscope they wriggle quite fast.  In aquatic habitats they may swim for a short distance, and a few terrestrial species can crawl through dry sand.

Marine Nematode – Dr. Roy P. E. Yanong, UF/IFAS Tropical Aquaculture Lab

Many free-living nematodes are carnivorous and feed on tiny animals and other nematodes.  Some feed on microscopic algae and fungi.  Some terrestrial species pierce the roots of plants and digest the material within.  Many marine species will feed on detritus lying on the seafloor.  The carnivorous species may possess small teeth, and many have a stylet they can use to pierce prey or the plant root to access food.  The mouth leads to a long digestive tract and eventually an anus – nematodes have a complete digestive tract.

The brain is basically a nerve ring near the head that leads to numerous nerve chords that run the length of the body.  Sensory cells are most associated with the sense of touch and smell.

Having separate sexes is the rule for nematodes, but not for all.  Males are usually much smaller and usually have a hooked posterior end which they use to hold the female during mating.  50-100 eggs are usually produced and laid within the environment.

Farmers and horticulturists are familiar with these free-living nematodes, but it is the parasitic ones that are most known to the general public.  There are many different forms of parasitism within nematodes.  Dr. L.H. Hyman categorized them as follows:

  1. Ectoparasites that feed on the external cells of plants – using their stylet to pierce the plant tissue and remove nutrients.
  2. Endoparasites of plants. Juveniles of some nematodes enter plants and feed on tissue.  This can cause tissue death and gall-like structures.
  3. Some free-living nematodes, while juveniles, will enter the bodies of invertebrates and feed on the tissue when the invertebrate dies.
  4. Endoparasites within invertebrates as juveniles, but the adult stage is free-living.
  5. Some are plant parasites as juveniles and animal parasites as adults. The females live within the bodies of plant eating insects, where they give birth to their young.  When the insects pierce the plant tissue, the juveniles enter the plant and begin feeding on it.  When they mature into adults, they re-enter the insects and the cycle begins again.
  6. Those that live within animals. The eggs, or newly hatched young, may be free-living for a short period, where they find new animal hosts, but the majority of the life cycle occurs within the animal.  Many known to us infect dogs, cats, pigs, cattle, horses, chickens, fish, and humans.

Heartworms, pinworms, and hook worms are names you may have heard.  For dog nematodes, the eggs are released into the environment by the dog’s feces.  Another dog eats this feces and becomes infected.

The nematode known as Ascaris lumbricoides is the most common parasitic worm in humans.  It has been estimated that almost 1 billion people are infected with it.  Female Ascaris release developing eggs into the environment via human feces.  Other humans become infected after swallowing food or water containing the eggs.  Once inside the human, the eggs hatch and penetrate the tissue moving into the heart and eventually the lungs.  From here they crawl up the trachea inducing a coughing response which is followed by a swallowing response that moves the developing juvenile worm into the esophagus and eventually back to the intestines where the cycle begins again.  Infections of this worm are more common where sanitation systems are not adequate and/or human feces are used as a fertilizer.

Hookworms are another human parasite that feed on blood and can cause serious infections in humans due to blood and tissue loss.  Fertilized eggs of this worm are laid in the environment and re-enter new human host as developing juveniles by penetrating their skin.  Once in the new host the developing worms are carried to the lungs via the circulatory system and work their way into the pharynx, are swallowed, and eventually end up in the intestine.  Not all hookworm juveniles penetrate through the skin but rather enter the body when the person unknowingly consumes human feces.  This can happen from not washing your hands or food (if human waste is used as fertilizer). Pinworms and whipworms are other nematodes that have similar life cycles.  In Asia there are some nematodes that are passed to humans by biting insects.

The roundworm known as the nematode is a common issue for farmers, horticulturists, and as a parasite in some parts of the world.  Their lifestyles, while being a potential problem for us, have been very successful for them.  In the next edition in this series, we will learn more about the most advanced worms on our planet – the segmented worms.  We will begin with the polychaetes.

References

Barnes, R.D. (1980). Invertebrate Zoology. Saunders Publishing. Philadelphia PA. pp. 1089.

Ascaris lumbricoides. 2024. Wikipedia. https://en.wikipedia.org/wiki/Ascaris_lumbricoides.

Half Shell Oyster Oddities

Half Shell Oyster Oddities

Oysters are not only powerful filterers, they also provide a home and habitat for many marine organisms. Most of these organisms will fall off while the oysters are being harvested or cleaned, but some will stay behind and can be found inside or outside of your oyster on the half shell. Seeing some of these creatures might give you the “heebie jeebies” about eating the oyster, they are perfectly safe and can either be removed or, in some cases, consumed for luck. These creatures include mud worms (Polydora websteri), “pea crabs” (Pinnotheres ostreum or Zaops ostreus), and “mud crabs” (Panopeus herbstii, Hexapanopeus angustifrons or Rhithropanopeus harrisii).

Mud Worms (Polydora websteri)

mudworm

A Mud Worm in an Oyster – Louisiana Sea Grant

One of the more common marine organisms you can find on an oyster is the oyster mud worm. These worms are typically red in color and form a symbiotic relationship with the oyster. Mud worms can be found in both farmed and wild harvest oysters throughout the United States. These worms will typically form a “mud blister” and emerge when the oyster has been harvested. Even though the worms look menacing and unsightly, they are a sign of a fresh harvest and a good environment. Mud worms do not pose any threat to humans and can be consumed.

If you find a mud worm on your next oyster and are still unsure, just simply remove the worm and dispose of it. Dr. John Supan, retired professor and past director of Louisiana Sea Grant’s Oyster Research Laboratory on Grand Isle, mentioned in an article that oyster mud worms “are absolutely harmless and naturally occurring,” and “if a consumer is offended by it while eating raw oysters, just wipe it off and ask your waiter/waitress for another napkin. Better yet, if there are children at the table, ask for a clear glass of water to drop the worm in. They are beautiful swimmers and can be quite entertaining.”

“Pea Crabs” (Pinnotheres ostreum or Zaops ostreus)

“Pea Crabs” are in fact two different species of crabs lumped together under one name. Pea crabs include the actual pea crab (Pinnotheres ostreum) and the oyster crab (Zaops ostreus). These crabs are so closely associated with oysters that their species name contains some form of the Latin word “ostreum” meaning oyster! Pea crabs are known as kleptoparasites and will embed themselves into the gills of an oyster and steal food from the host oyster. Even though they steal food, they seem to pose no threat to the oyster and are a sign of a healthy marine ecosystem.

A Cute Little Pea Crab – (C)2013 T. Michael Williams

Pea crabs are soft-bodied and round, giving them the pea name. Pea crabs can be found throughout the Atlantic coast, but are more concentrated in coastal areas from Georgia to Virginia. While they might look like an alien from another planet, they are considered a delicacy and are typically consumed along with the oyster. If you are brave enough to slurp down a pea crab, you might just be rewarded with a little luck. According to White Stone Oysters, “historians and foodies alike agree that finding a pea crab isn’t just a small treat, it’s also a sign of good luck!”

“Mud Crabs” (Panopeus herbstii, Hexapanopeus angustifrons or Rhithropanopeus harrisii)

Smooth Mud Crab – Florida Shellfish Lab

Just like pea crabs, “mud crabs” is another name for two different species of crabs commonly found in oysters. These crabs, the Harris Mud Crab (Rhithropanopeus harrisii), Smooth Mud Crab (Hexapanopeus angustifrons), and the Atlantic mud crab (Panopeus herbstii) to name just a few, reach a maximum size of 2 to 8 centimeters and are hard-bodied, unlike the pea crabs. Mud crabs can survive a wide range of salinities, but need cover to survive as these crabs are common prey for most of the oyster habitat dwellers, such as catfish (Ariopsis felis), redfish (Sciaenops ocellatus), and sheepshead (Archosargus probatocephalus). These crabs are not beneficial to an oyster environment as they will seek out young oysters and consume them by breaking the shell with their strong claws. If you find a mud crab in your oyster, this is one to dispose of before consuming. However, these crabs typically live on the outside of an oyster and are typically only found when you buy a sack of oysters and do not have an effect on the quality of the oyster.

Don’t Be Afraid

Hopefully this article has helped shed some light on the creatures you might experience when shucking or consuming oysters. Here is a helpful online tool to help identify some marine organisms associated with clam and oyster farms (Click Here). While most of the organisms can be consumed, we recommend the mud crabs be disposed of due to their hard shells. Remember, some of these organisms can bring you luck and with college football season around the corner, some of us might need all the luck we can get! Bring on the pea crabs!

References Hyperlinked Above