Select Page
The 2023 Year in Review – Water Quality

The 2023 Year in Review – Water Quality

Based on an annual evaluation recent competed, and feedback from my advisory committee, water quality issues are the number one natural resource concern for those who follow my extension programs.  It makes sense.  Poor water quality can negatively impact businesses who depend on clean water, waterfront property values, tourism, and the untold numbers of Florida panhandle residents who recreate in our estuaries and bays.  The water quality issues I provided education on in 2023 are focused on the Pensacola Bay system, but these issues are probably similar across the Florida panhandle.  Those issues include excessive nutrients, fecal bacteria (and other microbes), and salinity.  We also wrote one article on the increasing water temperatures occurring in the summer. 

Let’s begin with the fecal bacteria issue.  In the Pensacola Bay area, it may be our number one concern.  The Florida Department of Health posts local health advisories each week and some bodies of water are issued advisories for over 30% of the samples that are taken.  Frequently Bayou Chico (in Pensacola Bay) is issued an advisory over 50% of the samples taken.  However, in 2023 (in the Pensacola area) the number of advisories never exceeded 30% for any body of water.  Seven of the 13 swimming beaches monitored did not post an advisory at all.  This is one of the best years we have had since I began monitoring them. 

Closed due to bacteria. Photo: Rick O’Connor

In 2023 eight of the 13 water quality articles I wrote were on this subject.  Three additional articles were posted by other extension agents on our panhandle e-newsletter team.  But my annual follow up survey showed very few adopted best management practices (BMPs) they could adopt to help reduce fecal bacteria in area waterways.  The reduction was more likely due to the effort by our local city and county to improve sewage infrastructure and the fact that we were in a drought for much of the year – there is a positive correlation between rainfall and the number of advisories issued for local waterways.  Despite the fact that few readers adopted BMPs this year, and advisories declined – at least in Pensacola – we still believe adopting these practices would help reduce this issue.  We will be developing a fact sheet in 2024 to help homeowners better understand these practices and help reduce health advisories.    

Another local water quality issue that is high on everyone’s mind is excessive nutrients.  This is actually one of the largest concerns nationwide.  Excessive nutrients can lead to algal blooms, which can lead to harmful algal blooms or low dissolved oxygen, which can lead to fish kills.  In the Pensacola Bay area large fish kills have not occurred in decades, but nutrient monitoring continues.  The UF IFAS Lakewatch program trains local volunteers how to collect water samples and measure water clarity.  The samples are analyzed in the Lakewatch lab on campus in Gainesville and the results sent back to the community.  In the Pensacola Bay area, we are currently monitoring six bodies of water (three stations in each).  Nutrients values are stable, or improving, in four of the six locations.  They are slightly elevated in Bayou Chico and one station in Bayou Texar is quite high in total nitrogen.  Despite the values at those stations, no algal blooms or fish kills occurred in either Bayou Chico or Bayou Texar (or anywhere else in the Pensacola Bay area) in 2023.  There are numerous sources for nutrients in local waterways and many behavior practices businesses and residents can adopt to help reduce nutrient pollution.  In 2023 I wrote only one article on this topic but plan to provide more education in 2024.     

A body of water receiving excess nutrients can turn green and unhealthy from too much algae growth. Photo Credit: UF IFAS FFL program

A third topic that caught attention this year was the warm water that occurred this past summer.  Extreme water temperatures can decrease dissolved oxygen below levels where most estuarine creatures can survive.  Many creatures have a thermal tolerance that could have been exceeded this year.  Industries like oyster farming are negatively impacted.  Many varieties of harmful algae thrive in warm conditions.  My extension program does not conduct any citizen science project that monitors water temperatures within the bay.  Working with our local oyster farmers, the local estuary program is beginning to monitor such, and more folks are taking notice of the issue.  Extension agents posted four articles on the subject this year.  Whether the summers of high-water temperatures will become more common is unknown.  The first thought on cause is climate, and management practices on how to reduce climate change are well documented.  It is also understood that adopting such practices will not reduce intense warm summers immediately but should still be adopted for the long term.  It is also possible that the current extreme heat summers are cyclic, and things will cool down (relatively) in coming seasons.  2023 was an El Nino year.  Monitoring and time will tell how this issue will play out.  That said, it would be smart to consider behavior changing practices for the future.  Extension will post more information on this topic in 2024.   

The Gulf of Mexico at sunrise. Photo: Rick O’Connor

One issue of concern personally was the impact of increased rain on the salinity of our bay.  There has been a noticeable (and measured) increase in rainfall in recent years.  For Pensacola, we historically received about 60 inches of rain each year – one of the wetter locations in the southeast.  But over the last decade this has increased to 70 inches per year.  Along with the increase in rainfall, there has been a noticeable increase in development.  This increase in development reduces the surface area of land that would naturally absorb this rainwater and recharge the much-needed aquifer.  Instead, this rainwater is diverted from the new developments to stormwater management projects – some that work well, others that do not.  The question I have on the table is whether this increase in stormwater run-off is decreasing the salinity of area waterways?  And, if so, is it to a level where local marine species (and those we are trying to restore) will be negatively affected?  To answer this question, I have trained volunteers to monitor salinity at locations around the bay area.  They are monitoring once a week, at the surface, near the shoreline.  Though the sampling location is not ideal, it is what our volunteers are able to do.  I had determined that the data would be collected until each volunteer reached 100 readings (about two years).  As of the end of 2023, five of the 13 monitoring locations (38%) have reached that 100-reading mark.  We know that the turtle grass and bay scallops, both species we would like to see increase in our bay, require salinity be at (or above) 20 parts per thousand.  Though there are many more weeks of monitoring needed to reach our mark, current data suggests that salinities have not altered from data posted decades ago and are high enough for these species to return in areas where they historically existed. 

I will finish this review with a comment that articles were posted in 2023 on issues I am not directly involved with, but know they are a concern in many areas of the panhandle.  Private drinking wells being one.  There were several articles posted by Dr. Andrea Albertin addressing this issue in 2023 and for those interested in this topic I recommend they read these, and/or reach out to her directly (albertin@ufl.edu.).  There was also an article that focused on water quality improvement BMPs in general posted by Khadejah Scott (Wakulla County) that may be of interest.  https://nwdistrict.ifas.ufl.edu/nat/2023/10/05/simple-steps-to-improve-local-water-quality/.

With this being a large issue with many in the Florida panhandle, extension will continue to publish articles and have programs on this topic.  Reach out to your local county extension office for more information. 

The Elusive Gulf Sturgeon

The Elusive Gulf Sturgeon

Mark Twain once said – “Everyone talks about the weather, but no one does anything about it.”  A similar statement could be made about the Gulf Sturgeon – “Everyone talks about the Gulf sturgeon, but on one has actually seen one.”  Those along the coast who have a dock, pier, seawall, or have placed a marina, artificial reef, or oyster farm over state submerged lands, have certainly heard about this fish.  It is a portion of the permit in each case.  Heck, maybe they have seen one.  But it is a fish that many know about but seems elusive to encounter. 

Left-facing Gulf sturgeon illustration. Lighter brown than Atlantic sturgeon. Credit: Jack Hornady for NOAA Fisheries.

The Gulf sturgeon (Acipenser oxyrinchis desotoi) is one of 27 species of sturgeon found worldwide.  It is a subspecies of the Atlantic sturgeon.  These are ancient fish, and they look it.  Sturgeons are large, reaching lengths of up to eight feet and 300 pounds.  They have armored looking scutes embedded into their skin, giving them a “dinosaur” appearance.  They have a heterocercal caudal fin that resembles a shark.  And like sharks, they have a cartilaginous skeleton and a spiral valve within their digestive tract.  Their head has a pointed snout with whisker-like structures called barbels, which are used for detecting food buried in the sand, and they lack teeth.  They have been swimming in our oceans since the era of the dinosaurs, about 225 million years. 

Sturgeons are anadromous fish, meaning they (like salmon) spend their adult lives in salt water, traveling miles upriver to their location of their birth to lay eggs.  The Gulf sturgeon spends the colder months (November through February) inhabiting our bays and the nearshore Gulf of Mexico in waters less than 100 feet.  Now is the time when you may encounter one near the coast.  Because they eat very little while in the river systems, they gorge on benthic invertebrates during the winter.  They spend most of their time over sand flats and sand bars, using their barbels to detect a variety of buried invertebrates.  When sturgeon sense warmer months coming, they begin their long migrations up the inland rivers seeking the area where they were born.  At this time, they leap from the water like mullet and make splashes that can be heard from a long distance.  They are famous for this in the Suwannee River and have, at times, been a concern for boaters and jet skiers.  Many boaters have had to go to the hospital due to collisions with leaping sturgeon. 

The Gulf Sturgeon. Photo: U.S. Geological Survey

Once they reach the spawning grounds, if conditions are right – temperature, water flow, and pH – the female will lay between 250,000 – 1,000,000 eggs which will become fertilized by the smaller males.  Most eggs will not survive, but for those that do, the cycle will begin again with the trek back towards the Gulf of Mexico beginning in September. 

Why are they declining?

Early in the 20th century they were sought after for their meat and fertilized eggs (caviar).  Most of the rivers within their range (which is between the Mississippi and Suwannee Rivers) have been damned, dredged, or both.  Dams impede their ability to reach their nursery grounds and dredging can reduce the required conditions to stimulate breeding, or literally bury their eggs.  Between these human activities, their numbers declined drastically.  In 1991 they were listed both as a federally and state threatened species and have been protected and monitored ever since.  The best population, and best chance to encounter one, is in the Suwannee River.  This river has been left basically pristine and has not had the habitat altering activities of the others.  Locally, they are found in the Escambia, Blackwater, and Yellow Rivers.   

Winter is the time to see them in the lower parts of our bay.  Maybe you will be lucky enough to encounter one. 

References

The Gulf Sturgeon. Florida Fish and Wildlife Conservation Commission.

https://myfwc.com/wildlifehabitats/profiles/saltwater/gulf-sturgeon/#:~:text=The%20Gulf%20sturgeon%2C%20also%20known,as%20a%20source%20of%20caviar.

The Gulf Sturgeon. National Oceanic and Atmospheric Administration.

https://www.fisheries.noaa.gov/species/gulf-sturgeon.

Panhandle Terrapin Project 2023 Report

Panhandle Terrapin Project 2023 Report

Diamondback terrapins are the only resident turtle within brackish water and estuarine systems.  Their range extends from Massachusetts to Texas but, prior to 2005, their existence in the Florida panhandle was undocumented.  The Panhandle Terrapin Project was developed to first determine whether terrapins exist in the panhandle (Phase I) and, if so, what is their status (Phase II and III). 

Mississippi Diamondback Terrapin (photo: Molly O’Connor)

The project began at the Marine Science Academy at Washington High School (in Pensacola) in 2005.  Between 2005 and 2010 the team was able to verify at least one record in each of the panhandle counties.  For Phase II we used what we called the “Mann Method” to determine the relative abundance of terrapins in each area.  To do this we needed to conduct assessments of nesting activity in each county.  In 2012 the project moved from Washington High School to Florida Sea Grant.  At that time, we developed a citizen science program to conduct Phase II of this project.  Effort first focused on Escambia and Santa Rosa counties, but in recent years has included Okaloosa County.  Florida Sea Grant now partners with the U.S. Geological Survey (based out of Gulf County) to assist with Phase II and lead Phase III, which is estimating populations using mark-recapture methods, as well as satellite tagging to better understand movements and habitat use.  The focus of Phase III has been Gulf County, but tagging has occurred in Okaloosa and Escambia counties. 

Over the years we have trained 271 volunteers who have conducted thousands of hours of nesting surveys and helped obtain a better picture of the status of diamondback terrapins in the Florida panhandle.  Here are the 2023 project results. 

Results from 2023

We trained 67 volunteers; 35 (52%) of which participated in at least one nesting survey.

The volunteers conducted 196 surveys logging 212 hours. 

During those surveys terrapins (or terrapin sign) were encountered 43 times; a Frequency of Encounter (FOE) of 22%.

Three terrapins were tagged.  Two from Okaloosa and one from Escambia.  All but two of the nine primary survey beaches saw nesting activity (78%).  One new nesting beach was discovered. 

Escambia County

Two nesting beaches.  47 surveys. 7 encounters (FOE = 15%).

The Mann Method assumes the sex ratio is 1:1 (male: female) but recent studies suggest the ratio may be as high as 5:1 (male: female).  Based on these two rations the number of terrapins estimated to be using these beaches ranged from 4-36. 

One terrapin (“Dollie”) was tagged.  Fire ants and torpedo grass were reported on some beaches. 

Santa Rosa County

Three nesting beaches.  68 Surveys. 14 encounters (FOE = 21%).

The number of terrapins estimated to be using these beaches ranged from 6-30.

No terrapins were captured, though one was seen nesting.  No invasive species were reported from the nesting beaches. 

Okaloosa County

Four nesting beaches. 67 surveys.  21 encounters (FOE = 31%). 

The number of terrapins estimated to be using these beaches ranged from 2-66.

Two terrapins were tagged (“Kennedy” and “Molly”).  Phragmites were reported from all beaches. 

Walton County

Walton county currently does not have a volunteer coordinator and surveys are not occurring at this time.  We are working with an individual who may take the lead on this. 

Bay County

This team is just beginning and currently there are no primary beaches.  The team focused on five beaches encountering terrapin nesting activity on one of them.  They conducted a total of 14 surveys encountering terrapin tracks on 1 of those (FOE = 7%).  The estimated number of terrapins using this beach ranged from 4-12. 

Baldwin County Alabama

Due to the proximity of terrapin habitat and nesting beaches at the Alabama/Florida line, and the possibility of terrapins using habitat in both states, a team was developed in Baldwin County Alabama this year.  The team began conducting Phase I surveys and encountered one deceased terrapin.  No nesting beaches have been identified at this time. 

Summary

The results of this year’s surveys suggest that, based on the number of nesting beaches we know of, there are anywhere from 2-66 terrapins utilizing them.  Again, two of the primary beaches did not have nesting activity this year.  USGS tagging studies will provide better population estimates and a better understanding of how these animals are utilizing these habitats.  The current population estimate for Gulf County is a little over 1000 individuals and most are showing relatively small range of habitat utilization, although two individuals in the western panhandle moved from one county to the neighboring one. 

Training for volunteers occurs in March of each year.  If you are interested in participating, contact Rick O’Connor – roc1@ufl.edu.

The Magical Comb Jelly

The Magical Comb Jelly

Recently I was walking along the shore of Santa Rosa Sound near Park West searching for horseshoe crab nesting.  I did not find any nesting activity, but the beach was covered with small comb jellies.  These creatures reminded me of my childhood days on Pensacola Beach when we used to throw them at each other – “football jellyfish” we would call them.  Now that I am an adult, I understand throwing comb jellies was not a good thing, but as a kid it was the thing to do.  I mean, these are jellyfish that do not sting.  How cool is that. It occurred to me that many reading this article also experienced comb jellies as a kid the way I did, but probably know very little about the animal that was bringing them enjoyment. So, let’s learn a little more about this magical creature. 

Comb jellies do not sting and they produce a beautiful light show at night.

The typical jellyfish we encounter at the beach is in the Phylum Cnidaria.  They have gelatinous bodies made of a material called mesoglea.  They have only one opening into their gut – the mouth, which serves both taking food in and releasing waste.  They have a thin tissue called the velum which they undulate allowing them to slowly pulsate through the water column.  Extending from their “bell” are tentacles armed with cells called cnidoblast (where they get their phylum name) which house a coiled harpoon possessing a drop of venom called a nematocyst.  They use these nematocysts to paralyze their prey, which – depending on the jellyfish and the type of venom they have – range from small planktonic creatures to decent sized fish.  To find their prey is a trick.  They do have nerves but lack a central nervous system (brain) and so they are aware of what is going on around them, and can react, but memory and thought is not high on their ability list.  The tentacles extend into the water column hoping to accidentally snag something to eat.  Another thing about cnidarians, is that some do not look like jellyfish at all.  Some, like the sea anemones and corals, look more like flowers attached to rocks extending their tentacles up into the water column hoping to get lucky. 

The nonvenmous comb jelly. Photo: Bryan Fluech

Our friend the comb jelly is in the Phylum Ctenophora.  They too have a gelatinous mesoglea body with only a mouth.  However, their method of swimming is different.  Instead of an undulating velum, they have grooves along their sides that house a row of cilia (hair-like structures) that move in a pattern similar to you running your finger over the bristles of a hair comb.  These are called ctenes and is where the animal gets its common name “comb jelly”.  Some species have tenacles, but our local one does not.  Either way there are no cnidoblast or nematocysts.  Rather they move through the water column, usually with their mouths facing upwards, collecting planktonic food and, in some cases, other comb jellies.  They also lack a brain but have the nerve net and they also possess a structure called a statocyst that lets them know whether they are upside down or not.  In this group there are only medusa (the swimming form), the polyps (flower-like form) found in cnidarians is not found in this group.  However, they do something that our local jellyfish do not do.  They emit light.  The cells that do this are located in the grooves where the ctenes are located.  The light they produce is blue in color and is magical when hundreds are doing this at night.  They use oxygen to produce this light.  It first appears bright, but as the oxygen is used it becomes dimmer. 

We saw them as something to play with when we were kids.  We see them now as a neat member of our marine community and a magical part of living at the beach.  Comb jellies are just cool. 

Pensacola Snake Watch – 2023 3rd Quarter Update

Pensacola Snake Watch – 2023 3rd Quarter Update

Since last year we have been logging reports from area residents of snake encounters.  The purpose of this is education.  We are learning which species people most frequently encounter, what time of year different species are encountered, and where they are being encountered.  Here is the 2023 3rd Quarter Update. 

To date – we have encountered 24 of the 40 species (60%) known to inhabit the Pensacola Bay area. 

The most frequently encountered snake has been the cottonmouth.  This species has been encountered 45 times.  It has been seen every month this year and at the following locations – north and south Escambia County as well as north and south Santa Rosa County. 

The cottonmouth. Photo: Ricky Stackhouse.

The second most frequently encountered snake has been the southern black racer.  This species has been encountered 35 times and every month except January.  Locations reporting this snake included – north and south Santa Rosa County, as well as north and south Escambia County. 

Southern Black Racer. Photo: Ricky Stackhouse.

The third most frequently encountered snake has been the banded water snake.  This species has been encountered 26 times and 25 of those were last winter and spring – the snake was only reported once during the summer and has not been reported this fall.  It was encountered from north and south Santa Rosa County as well as north and south Escambia County. 

The banded water snake is one of the more commonly encountered water snakes. Photo: Rick O’Connor

Reports by snake groups…

Small Snakes – 4 of the 7 species (57%) have been encountered.  The most common have been the Florida red-bellied snake and the Southern ring-necked snake.  These have been reported from north Escambia County, south Escambia County, north Santa Rosa County, Pensacola, Milton, and UWF. 

Florida Red-bellied snake. Photo: James Cutler.

Mid-Sized Snakes – 5 of the 8 species (63%) have been encountered.  The most common has been the Eastern garter snake.  It has been reported from north Santa Rosa County, south Escambia County, south Santa Rosa County, and north Escambia County. 

The eastern garter snake is one of the few who are active during the cold months. Photo: Molly O’Connor

Large Snakes – 6 of the 7 species (86%) have been encountered.  The most common has been the Southern black racer followed by its close cousin the Eastern coachwhip.  The only large snake not encountered so far this year has been the Eastern indigo snake, which is a threatened species and encounters in the wild have not been documented since the late 1990s.  Coachwhip encounters have occurred from south Escambia County, north Santa Rosa County, and south Santa Rosa County.

Eastern Coachwhips are long and thin, and most adults have a dark head and upper body. The rest of the body is tan or brown and the scale pattern on the tail resembles a braided bullwhip. Photo by Nancy West.
The eastern indigo snake is the largest nonvenomous snake in the southeast. Photo: Molly O’Connor

Water Snakes – 4 of the 13 species (31%) have been encountered.  The most common has been the Banded water snake followed by the Brown water snake.  The Brown water snake has been encountered on the Choctawhatchee River, Perdido River, Blackwater River, Escambia River, and south Escambia County. 

Venomous Snakes – all 4 venomous species in our area have been encountered (100%).  The most common has been the Cottonmouth followed by the Eastern diamondback rattlesnake.  The diamondback has been encountered from south Escambia County, north Santa Rosa County, and south Santa Rosa County.  With high interest in venomous snakes, the other encounters include the Dusky pygmy rattlesnake, which has been encountered from south Escambia County, and north Santa Rosa County.  The Eastern coral snake has only been encountered once and that was from south Santa Rosa County. 

Eastern Diamondback Rattlesnake. Photo: Bob Pitts.
Dusky pygmy rattlesnake. Photo: Jessica Bickell.
Eastern coral snake. Photo: Joe Burgess.

Rare Encounters – those that have only been encountered once this year…

Rough earth snake was encountered during September from south Escambia County. 

Rough green snake was encountered during August from north Santa Rosa. 

Eastern hognose was encountered during July from north Santa Rosa. 

Eastern kingsnake was encountered in February from north Escambia County.

Eastern coral snake was encountered in June from south Santa Rosa County. 

Florida pine snake was encountered during the winter and spring from north Santa Rosa County.

Seasonal Encounters

Winter – 57 encounters, 13 species.

Spring – 89 encounters, 20 species.

Summer – 52 encounters, 18 species.