Pensacola Snake Watch – 2023 3rd Quarter Update

Pensacola Snake Watch – 2023 3rd Quarter Update

Since last year we have been logging reports from area residents of snake encounters.  The purpose of this is education.  We are learning which species people most frequently encounter, what time of year different species are encountered, and where they are being encountered.  Here is the 2023 3rd Quarter Update. 

To date – we have encountered 24 of the 40 species (60%) known to inhabit the Pensacola Bay area. 

The most frequently encountered snake has been the cottonmouth.  This species has been encountered 45 times.  It has been seen every month this year and at the following locations – north and south Escambia County as well as north and south Santa Rosa County. 

The cottonmouth. Photo: Ricky Stackhouse.

The second most frequently encountered snake has been the southern black racer.  This species has been encountered 35 times and every month except January.  Locations reporting this snake included – north and south Santa Rosa County, as well as north and south Escambia County. 

Southern Black Racer. Photo: Ricky Stackhouse.

The third most frequently encountered snake has been the banded water snake.  This species has been encountered 26 times and 25 of those were last winter and spring – the snake was only reported once during the summer and has not been reported this fall.  It was encountered from north and south Santa Rosa County as well as north and south Escambia County. 

The banded water snake is one of the more commonly encountered water snakes. Photo: Rick O’Connor

Reports by snake groups…

Small Snakes – 4 of the 7 species (57%) have been encountered.  The most common have been the Florida red-bellied snake and the Southern ring-necked snake.  These have been reported from north Escambia County, south Escambia County, north Santa Rosa County, Pensacola, Milton, and UWF. 

Florida Red-bellied snake. Photo: James Cutler.

Mid-Sized Snakes – 5 of the 8 species (63%) have been encountered.  The most common has been the Eastern garter snake.  It has been reported from north Santa Rosa County, south Escambia County, south Santa Rosa County, and north Escambia County. 

The eastern garter snake is one of the few who are active during the cold months. Photo: Molly O’Connor

Large Snakes – 6 of the 7 species (86%) have been encountered.  The most common has been the Southern black racer followed by its close cousin the Eastern coachwhip.  The only large snake not encountered so far this year has been the Eastern indigo snake, which is a threatened species and encounters in the wild have not been documented since the late 1990s.  Coachwhip encounters have occurred from south Escambia County, north Santa Rosa County, and south Santa Rosa County.

Eastern Coachwhips are long and thin, and most adults have a dark head and upper body. The rest of the body is tan or brown and the scale pattern on the tail resembles a braided bullwhip. Photo by Nancy West.
The eastern indigo snake is the largest nonvenomous snake in the southeast. Photo: Molly O’Connor

Water Snakes – 4 of the 13 species (31%) have been encountered.  The most common has been the Banded water snake followed by the Brown water snake.  The Brown water snake has been encountered on the Choctawhatchee River, Perdido River, Blackwater River, Escambia River, and south Escambia County. 

Venomous Snakes – all 4 venomous species in our area have been encountered (100%).  The most common has been the Cottonmouth followed by the Eastern diamondback rattlesnake.  The diamondback has been encountered from south Escambia County, north Santa Rosa County, and south Santa Rosa County.  With high interest in venomous snakes, the other encounters include the Dusky pygmy rattlesnake, which has been encountered from south Escambia County, and north Santa Rosa County.  The Eastern coral snake has only been encountered once and that was from south Santa Rosa County. 

Eastern Diamondback Rattlesnake. Photo: Bob Pitts.
Dusky pygmy rattlesnake. Photo: Jessica Bickell.
Eastern coral snake. Photo: Joe Burgess.

Rare Encounters – those that have only been encountered once this year…

Rough earth snake was encountered during September from south Escambia County. 

Rough green snake was encountered during August from north Santa Rosa. 

Eastern hognose was encountered during July from north Santa Rosa. 

Eastern kingsnake was encountered in February from north Escambia County.

Eastern coral snake was encountered in June from south Santa Rosa County. 

Florida pine snake was encountered during the winter and spring from north Santa Rosa County.

Seasonal Encounters

Winter – 57 encounters, 13 species.

Spring – 89 encounters, 20 species.

Summer – 52 encounters, 18 species. 

The Long Flight South

The Long Flight South

In the fall of the year, North American monarch butterflies travel from their summer breeding grounds to overwintering location. Those from east of the Rocky Mountains, travel up to an astonishing 3,000 miles to central Mexico. Unlike summer generations that only live for two to six weeks as adults, Eastern monarch adults emerging after about mid-August can live up to nine months. They enter reproductive diapause and begin migrating south in response to decreasing day length and temperatures. This generation has never seen the overwintering grounds before. 

As the Monarch butterflies migrate through the Panhandle, saltbush (Baccharis halimifolia), is a must visit.  Their tiny, white to greenish blooms and “fuzzy-looking” fruit come into flower and are attractive at a time when few other small trees and shrubs are flowering, bring this rarely-noticed native plant into view in the fall landscape.

Saltbush is an oval to rounded, freely branched, multi-stemmed, hardy, semi-evergreen to deciduous, cold-tolerant shrub usually not exceeding about 12 feet in height.  Its leaves are 1-3 inches long and about 1 1/2 inches wide, often deeply toothed, and shiny to grayish green.  No serious pests are normally seen on the plant.   Also referred to as Groundsel, it is native to coastal and interior wetlands throughout Florida, often seen in its native habitat with Wax Myrtle, Buttonbush and Marsh Elder.

The average pace of the migration is around 20-30 miles per day. But tag recoveries have shown that monarchs can fly 150 miles or more in a single day if conditions are favorable.  Monarchs migrate during the day, coming down at night to gather together in clusters in a protected area.  In the south, they might choose oak or pecan trees, especially if the trees are overhanging a stream channel.

Monarchs migrate alone—they do not travel in flocks like birds do. So they often descend from the sky in the afternoon to feed, and then search for an appropriate roosting site. Most roosts last only 1 or 2 nights, but some may last a few weeks.

By early November, the monarchs gather in oyamel fir (Abies religiosa) trees on south-southwest facing mountains in central Mexico. Orientation of insects is not well understood by entomologists. It can’t be learned from their parents since it’s the fourth or fifth generation that migrates south. Celestial cues (the sun, moon, or stars) and the earth’s magnetic field are the most accepted driving forces influencing the monarch butterflies’ instincts. Unique genetics in North American monarchs have been discovered by researchers. Low metabolic rates and changes in muscle function make migrating butterflies endurance athletes.

The earliest records of overwintering clusters of monarchs are from the 1860s. The chosen grounds provide all the elements needed for overwintering. Because monarchs need water for moisture, the fog and clouds in the two-mile-high mountainous region provide a perfect resting area. Clustered together, covering the trunks and branches of the sacred fir trees, the monarchs are protected form the occasional frost, snow, rain, or hail by the thick canopy of the tall trees, surrounding shrubs, and nectar providing flowers. Milkweed is not the essential plant for the overwintering generation. Come spring, the monarch will begin their search for the milkweed.

The Great Scallop Search; Pensacola Bay 2023

The Great Scallop Search; Pensacola Bay 2023

Introduction

Bay scallops (Argopecten irradians) have been an important part of the economy of many gulf coast communities within the Florida Big Bend for decades.  It was once abundant in all gulf coast counties of the state but beginning in the 1960s populations in many bays began to decline to levels where they are all but nonexistent.  The cause of this decline has been associated with many factors including a decline in water quality, a decline in suitable habitat (sea turtle grass beds – Thalassia), and overharvesting.  Most likely the cause included all of these.  Since the collapse of both the commercial and recreational fishery, Gulf coast communities have been trying to address all three of the stressors above.  Multiple monitoring projects are ongoing in the Pensacola Bay area and one of those is the Great Scallop Search.  

The Great Scallop Search was developed by Sea Grant Agents in Southwest Florida and expanded, through Florida Sea Grant, to Northwest Florida.  In each location volunteers snorkel a 50-meter transect line searching for live bay scallops, as well as monitoring the status of the seagrass habitat.  Since 2015 317 volunteers have logged 634 hours surveying 407 50-meter transects in 106 grids in Big Lagoon or Santa Rosa Sound.  In that time 4 live scallops have been logged, though we hear anecdotal reports of additional scallops being found in these bodies of water. 

Survey Method

Volunteers select and survey one of 11 grids in Big Lagoon, or one of 55 grids in Santa Rosa Sound.  Once on site, the volunteers anchor and record preliminary information on the data sheet provided.  Two snorkelers enter the water and swim on opposite sides of a 50-meter transect line searching for live scallops.  Any live scallop found is measured and returned.  The species and density of the seagrass is recorded as well as the presence/absence of macroalgae on that seagrass.  Four such transects are surveyed in each grid. 

2023 Results

2023SRSBLTotalOther
# of volunteers    72No significant difference between 2022 and 2023
# of grids surveyed8816Slight decrease from 2022.  16 of the 66 grids (24%) were surveyed. 
# of transects surveyed265177A decrease from 2022.  More surveys were conducted in Big Lagoon than Santa Rosa Sound. 
Area surveyed (m2)2600510077001.9 acres
# of scallop found2  24Four live scallops are a record for this project.  It equals the sum of all other live scallops since the project began. 
Scallop Size (cm)4.5, 5.04.0, 4.5  
Surveys with Seagrass    
Halodule5121717/21 surveys – 81%
Thalassia8111919/21 surveys – 90%
Syringodium0222/21 surveys – 10%
Grass Density    
100% grass391212/21 surveys (57%) were 100% grass
90%101Note: Volunteers typically select area for transects
75%314with a lot of grass.
70%101 
50%3912 
5%101 
Macroalgae    
Present448 
Absent2101212/21 surveys (57%) had no macroalgae.
Abundant224 
Sediment Type    
Mud011 
Sand781515/21 surveys (71%) were sandy.
Mixed145 

21 surveys were conducted covering 16 grids.  8 grids were surveyed in each body of water. 

A total of 77 transects were conducted covering 7,700 m2 and four live scallops were found. 

Two of the scallops were found in Big Lagoon and two in Santa Rosa Sound. 

All scallops measured between 4-5cm (1.6-2”). 

The number of live scallops found this year equaled the total number found over the last eight years. 

Most of the transects included a mix of Halodule and Thalassia seagrass ranging from 100% coverage to 5%.  The majority of the transects were between 50-100% grass.  Four transects had 100% Thalassia.  Three of those were in Santa Rosa Sound, one was in Big Lagoon.  The diving depth of the volunteers ranged from 0 meters (0 feet) to 2.4 meters (8 feet).  Macroalgae was present in 8 of the 21 surveys (38%) but was not abundant in most. 

Volunteer measuring one of the four collected bay scallops in 2023 from Pensacola Bay. Photo: Gina Hertz.

Summary of Project

YearVolunteerGrids SurveyedTransects SurveyedLive Scallops Found
201587281010
201696311111
201754160
2018207320
2019136200
202052161
2021176240
20227422872
20237216774
TOTAL3174078
MEAN3514450.4

To date we are averaging 35 volunteers each event, surveying 14 of the 55 possible grids (25%).  We are averaging 45 transects each year (4500 m2), have logged 407 transects (40,700 m2) and have recorded 8 live scallops (< than one a year). 

Discussion

Based on the results since 2016 this year was a record year for live scallops.  Whether they are coming back on their own is still to be seen.  Being mass spawners, bay scallop need high densities in order to reproduce successfully, and these numbers do not support that.  The data, and comments from volunteers, suggest that the grasses look good and dense.  Thalassia, a favorite of the bay scallop, appear to be becoming more abundant.  This is a good sign. 

Though small and few, bay scallops are trying to hold on in Pensacola Bay. Photo: Gina Hertz
Meet the New Invasive Species on the Barrier Islands; Cogongrass

Meet the New Invasive Species on the Barrier Islands; Cogongrass

Miami is ground zero for invasive species in this state.  But the Florida panhandle is no stranger to them.  Where they are dealing with Burmese pythons, melaleuca, and who knows how many different species of lizards – we deal with Chinese tallow, Japanese climbing fern, and lionfish.  The state spends hundreds of thousands of dollars each year battling and managing these non-native problem species.  By definition, invasive species cause environmental and/or economic problems, and those problems will only get worse if we do not spend the money to manage them.  Those who work in invasive science and resource management know that the most effective way to manage these species is to detect them early and respond rapidly. 

The Invasive Species Curve

Invasive species have made their way to the coastal waters and dunes of the barrier islands in the Florida panhandle.  Beach vitex, Brown anoles, and Chinese tallow are found on most.  Recently on Perdido Key near Pensacola, we found a new one – cogongrass. 

Cogongrass (Imperata cylindrica) was accidentally introduced to the Gulf coast via crates of satsumas entering the port of Mobile in 1912.  It began to spread from there and has covered much of the upland areas of the southeastern U.S.  It has created large problems within pasture lands, where livestock will not graze on it, and in pine forest where it has decreased plant and animal biodiversity as well as made prescribed burning a problem – it burns hot, hot enough to actually kill the trees.  The impacts and management of this plant in that part of the panhandle has been known for a long time.  The Department of Agriculture lists it as one of the most invasive and noxious weeds in the country. 

Cogongrass seedheads are easily spotted in spring. Photo credit: Mark Mauldin

Two years ago cogongrass was discovered growing around a swimming pool area at a condo on Perdido Key.  To be considered an invasive species you must (a) be non-native to the area – cogongrass is certainly non-native to our barrier islands, (b) have been introduced by humans (accidentally or intentionally) – strike two, we THINK it was introduced by mowers.  This is a common method of spreading cogongrass, mowing an area where it exists, then moving those mowers to new locations without cleaning the equipment.  We do not know this is how it got to the island, but the probability is high.  Third, it has to be causing an environmental and/or economic problem.  It certainly is north of the I-10, but it is not known what issue it may cause on our barrier islands.  Could it negatively impact protected beach mice and nesting sea turtle habitat?  Could alter the integrity of dunes to reduce their ability to hold sand and protect properties.  Could it overtake dune plants lowering both plant and animal diversity thus altering the ecology of the barrier island itself?  We do not know.  What we do know is that if we want to eradicate it, we need to detect it early and respond rapidly. 

According to EDDMapS.org – there are 75 records of cogongrass on the barrier islands, and coastal beaches of the Florida panhandle.  This is most likely under reported.  So, step one would be to conduct surveys along your islands and beaches.  Florida Sea Grant and Escambia County of Marine Resources are doing just that.  EDDMaps reports five records on Perdido Key and four at Ft. Pickens.  It most likely there is more.  A survey of the northeast area of Pensacola Beach (from Casino Beach east and north of Via De Luna Drive) has found two verified records and two unverified (they are on private property, and we cannot approach to verify).  Surveys of both islands continue. 

The best time to remove/treat cogongrass is in the fall.  The key to controlling this plant is destroying the extensive rhizome system.  In the upland regions, simple disking has been shown to be effective if you dig during the dry season, when the rhizomes can dry out, and if you disk deep enough to get all of the rhizomes.  Though the rhizomes can be found as deep as four feet, most are within six inches and at least a six-inch disking is recommended.  Depending on the property, this may not be an option on our barrier islands.  But if you have a small patch in your yard, you might be able to dig much of it up. 

Chemical treatments have had some success.  Prometon (Pramitol), tebuthurion (Spike), and imazapyr have all had some success along roadsides and in ditches north of I-10.  However, the strength of these chemicals will impede new growth, or plantings of new plants, for up to six months.  There are plants that are protected on our islands and on Perdido Key any altering of beach mouse habitat is illegal.  We certainly do not want to kill plants that are holding our dunes.  If you feel chemical treatment may be needed for your property, contact the county extension office for advice. 

Most recommend a mixture of burning, disking, and chemical treatment.  But again, this is not realistic for barrier islands.  Any mechanical removal should be conducted in the summer to remove thatch and all older and dead cogongrass.  As new shoots emerge in late summer and early fall herbicides can then be used to kill the young plants.  Studies and practice have found complete eradication is difficult.  It is also recommended not to attempt any management while in seed (in spring).  Tractors, mowers, etc. can collect the seeds and, when the mowers are moved to new locations, spread the problem.  If all mowing/disking equipment can be cleaned after treatment – this is highly recommended. 

Step one would be to determine if you have cogongrass on your property, then seek advice on how to best manage it.  For more information on this species, contact your local extension office. 

Whale I’ll Be!

Whale I’ll Be!

We are fortunate to have several whale species that have been spotted in the Gulf of Mexico including humpback whales, Rice whales, fin whales, sperm whales, sei whales, and orca whales. Recently, however, we have seen multiple reports of whale sharks near shore in Destin and Panama City Beach. 

Whale sharks, however, are not whales, but the largest shark species and the largest fish alive today.  Whale sharks aren’t even closely related to whales.   They have gills, not blow holes.  They are huge, up to 46 feet in length and weigh up to 22,000 lbs., the weight of two African elephants.  Despite their large size, they are filter feeders with plankton being their main food, although they are also known to eat squid, krill, and small baitfish. They glide through the water at speeds of less than 3 m/hr, gently swinging their bodies side to side. They are not aggressive and pose no threats to humans.

Whale sharks prefer warm water, which is why they can be found in tropical areas and are often attracted to coastal areas due to a higher abundance of food. It’s no surprise, then, that they have been spotted in the Gulf. June to October is whale shark season in the Gulf, with Destin sightings being reported previously in 2013 and 2020. They are also found in many other countries around the world including Mozambique, Philippines, Honduras, Ecuador, Australia, Belize, Thailand, Egypt, Mexico, Seychelles, and the Maldives.

Unsurprisingly, many ocean lovers are desperate to get a glimpse of these majestic creatures in the water. However, experts recommend a hands-off policy for these gentle sea creatures.  The Okaloosa Coastal Resource Team has been collaborating with NOAA scientists at the University of Southern Mississippi to tag 10 of this year’s visitors to gain valuable insights into their migratory patterns and habitat use. You can follow their Facebook page for updates on current locations and tracking data. https://www.facebook.com/whalesharkresearch

Dotty, a 25 foot female whale shark tagged off Destin, Florida in July 2023 (Alex Fogg).
Meet the Bay Scallop

Meet the Bay Scallop

As I write this, we are in the middle of our 2023 Scallop Search, an event we do each year to assess whether the scallops in Pensacola Bay are trying to make a comeback on their own.  Each year I am amazed at how popular this little mollusk is.  On the day I am writing, I will be working with a marine science class from the University of Southern Mississippi driving over from Ocean Springs.  This past weekend I worked with two families who trailered their boat from Enterprise Alabama to participate.  Those on the eastern end of the panhandle are well aware of the popularity of this creature.  Folks from all over the southeast travel there to go scalloping.  Many of the locals in my area, when I am training them how to do a scallop search, tell me that they head east and go scalloping every year.  Some even have condos for that week and it is a large part of their annual vacation plans.  And many of the locals here would love to see them return to Pensacola Bay. 

This is a creature that draws a lot of attention.  But most know very little about it.  They know it has small eyes and can swim – actually… I have recently found that not everyone knows they can swim.  We know they like grassbeds and they can be harvested in the summer.  They may have done this long enough to know the prime spots within the grassbeds to search for them – their “sweet spots”.  But not much more. 

So… let’s meet the bay scallop. 

Volunteers conducting the great scallop search. Photo: Molly O’Connor

Its scientific name is Argopecten irradians.  It is a mollusk in the class Bivalvia and the family Pectinidae.  There are numerous species, and the group is found all over the world.  The greatest variety of them are from the Indo-Pacific region, and in each case, they are a popular seafood.  Most can swim, though erratically – they are not Michael Phelps – and they use this ability to avoid predators such as starfish, which they can see with the set of simple eyes. 

There are five subspecies of A. irradiansA. irradians irradians, known as the bay scallop, or Atlantic Bay scallop (and from here is just “the scallop”) is our local variety.  It is found from Cape Cod to the Gulf of Mexico.  They begin life as a microscopic egg produced during the mass spawning of the hermaphroditic parents (hermaphroditic meaning each parent can produce sperm and egg).  The timing of the release of gametes is triggered by warming water and usually occurs in the late summer/early fall.  This early egg stage sinks to the bottom where it remains for a few weeks before hatching. 

The hatched larva remain microscopic, are transparent, resemble the parents, and are called spat.  The spat become part of the plankton in local estuaries but eventually return to the grass in what is called “spatfall” where they attached to the seagrasses using byssal threads.  They continue to grow, eventually release from the grass, and become the scallops we all know and love.  Many species of scallops can live over 20 years, but our local one only lives for one. 

As most know, adult scallops have two shells (bivalves) connected at the hinge on the dorsal side of the animal.  Though they do add weight to the shell, a disadvantage for a swimmer, the “ribs” provide a sturdier shell.  The two shells are connected by a single, large adductor muscle, which is used to open and close the valves during swimming.  It is this adductor muscle we eat when consuming scallops. 

Like all bivalves, scallops are filter feeders but unlike most bivalves they lack siphons to draw water in and out of the digestive tract.  Rather they lie with their valves slightly gaped and allow water to pass over them.  Plankton is collected by a mucous layer and then moved to the gut by cilia (small hair-like structures) where it is digested. 

Bay Scallop. Photo: FWC

Like all bivalves, scallops lack a brain as we know it but rather function using a series of ganglia (groups of nerve cells) connected to a nerve ring.  These ganglia can control movement of the muscle, gills, eyes, and are connected to a statocyst, which tells the scallop how it is oriented in the water column. 

There are numerous eyes aligned along the edge of each valve that can detect movement and shadows.  It is believed that they use their eyes to detect potential predators and possibly initiate the swimming behavior they are famous for. 

Living only one year, and reaching maximum size in late summer during spawning, scallop harvesting is regulated to that time of year in Florida.  Once common from Pensacola to Miami, they are now only found in large numbers in the Big Bend region.  Due to the loss of scallops in other areas, many visit the Big Bend each year to go scalloping, putting heavy harvest pressure on those stocks.  There have been efforts to try and enhance the existing populations as well as restore historic ones.  Here in Pensacola Bay, Florida Sea Grant works with volunteers to monitor the water quality and seagrasses, as well as assess how the few existing scallops are doing.

For more information on panhandle scallops, contact your local Sea Grant Agent at the county extension office.