Oysters are not only powerful filterers, they also provide a home and habitat for many marine organisms. Most of these organisms will fall off while the oysters are being harvested or cleaned, but some will stay behind and can be found inside or outside of your oyster on the half shell. Seeing some of these creatures might give you the “heebie jeebies” about eating the oyster, they are perfectly safe and can either be removed or, in some cases, consumed for luck. These creatures include mud worms (Polydora websteri), “pea crabs” (Pinnotheres ostreum or Zaops ostreus), and “mud crabs” (Panopeus herbstii, Hexapanopeus angustifrons or Rhithropanopeus harrisii).
Mud Worms (Polydora websteri)
A Mud Worm in an Oyster – Louisiana Sea Grant
One of the more common marine organisms you can find on an oyster is the oyster mud worm. These worms are typically red in color and form a symbiotic relationship with the oyster. Mud worms can be found in both farmed and wild harvest oysters throughout the United States. These worms will typically form a “mud blister” and emerge when the oyster has been harvested. Even though the worms look menacing and unsightly, they are a sign of a fresh harvest and a good environment. Mud worms do not pose any threat to humans and can be consumed.
If you find a mud worm on your next oyster and are still unsure, just simply remove the worm and dispose of it. Dr. John Supan, retired professor and past director of Louisiana Sea Grant’s Oyster Research Laboratory on Grand Isle, mentioned in an article that oyster mud worms “are absolutely harmless and naturally occurring,” and “if a consumer is offended by it while eating raw oysters, just wipe it off and ask your waiter/waitress for another napkin. Better yet, if there are children at the table, ask for a clear glass of water to drop the worm in. They are beautiful swimmers and can be quite entertaining.”
“Pea Crabs” (Pinnotheres ostreum or Zaops ostreus)
“Pea Crabs” are in fact two different species of crabs lumped together under one name. Pea crabs include the actual pea crab (Pinnotheres ostreum) and the oyster crab (Zaops ostreus). These crabs are so closely associated with oysters that their species name contains some form of the Latin word “ostreum” meaning oyster! Pea crabs are known as kleptoparasites and will embed themselves into the gills of an oyster and steal food from the host oyster. Even though they steal food, they seem to pose no threat to the oyster and are a sign of a healthy marine ecosystem.
A Cute Little Pea Crab – (C)2013 T. Michael Williams
Pea crabs are soft-bodied and round, giving them the pea name. Pea crabs can be found throughout the Atlantic coast, but are more concentrated in coastal areas from Georgia to Virginia. While they might look like an alien from another planet, they are considered a delicacy and are typically consumed along with the oyster. If you are brave enough to slurp down a pea crab, you might just be rewarded with a little luck. According to White Stone Oysters, “historians and foodies alike agree that finding a pea crab isn’t just a small treat, it’s also a sign of good luck!”
“Mud Crabs” (Panopeus herbstii, Hexapanopeus angustifrons or Rhithropanopeus harrisii)
Smooth Mud Crab – Florida Shellfish Lab
Just like pea crabs, “mud crabs” is another name for two different species of crabs commonly found in oysters. These crabs, the Harris Mud Crab (Rhithropanopeus harrisii), Smooth Mud Crab (Hexapanopeus angustifrons), and the Atlantic mud crab (Panopeus herbstii) to name just a few, reach a maximum size of 2 to 8 centimeters and are hard-bodied, unlike the pea crabs. Mud crabs can survive a wide range of salinities, but need cover to survive as these crabs are common prey for most of the oyster habitat dwellers, such as catfish (Ariopsis felis), redfish (Sciaenops ocellatus), and sheepshead (Archosargus probatocephalus). These crabs are not beneficial to an oyster environment as they will seek out young oysters and consume them by breaking the shell with their strong claws. If you find a mud crab in your oyster, this is one to dispose of before consuming. However, these crabs typically live on the outside of an oyster and are typically only found when you buy a sack of oysters and do not have an effect on the quality of the oyster.
Don’t Be Afraid
Hopefully this article has helped shed some light on the creatures you might experience when shucking or consuming oysters. Here is a helpful online tool to help identify some marine organisms associated with clam and oyster farms (Click Here). While most of the organisms can be consumed, we recommend the mud crabs be disposed of due to their hard shells. Remember, some of these organisms can bring you luck and with college football season around the corner, some of us might need all the luck we can get! Bring on the pea crabs!
Many of us are given that Birds and the Bees talk; another majority have had to give it as an adult to their kids. It is usually an awkward talk, but someone had to step up to the plate and put on a straight face. I am happy to be the one today to discuss one section of the Birds and the Bees of the Sea, batch spawning. Batch spawning, also known as broadcast spawning, is the coordinated release of gametes (sperm and eggs) into the water column. Batch spawning is not just relegated to fish, many species of invertebrates also batch spawn. Some of the most commonly encountered batch spawners include Florida Pompano (Trachinotus carolinus), Eastern Oyster (Crassostrea virginica), Red Drum (Sciaenops ocellatus), Red Snapper (Lutjanus campechanus), and Gag Grouper (Mycteroperca microlepis), to name a few. In fact, most gamefish species in the Gulf of Mexico are batch spawners. This has its advantages, but also has its major disadvantages. We will dive headfirst into a few representative species of saltwater organisms that batch spawn, and their respective life stages to help shed some light on reproduction in the marine world.
Baby Snapper – Thomas Derbes II
Eastern Oysters are a perfect representative for invertebrate batch spawning. I have gone over their life cycle in a previous article (Click Here), but I will just quickly go over their spawning habits and life history. Eastern Oysters typically spawn during the changing of the seasons, particularly from Spring to Summer and Summer to Fall. As humans, we see these changing temperatures and weather fronts as an opportunity for a new wardrobe, but these changes are triggers for oysters to spawn. Once one oyster releases their gametes into the water all of the mature oysters in the area will start releasing their gametes. Waiting to sense for other gametes in the water is a very smart tactic. This allows for a coordinated spawn between masses of oysters and (hopefully) increases the fertilization rate of the eggs. Since oysters cannot move, batch spawning is the most beneficial way for them to reproduce. Females can release anywhere from 2 to 70 million eggs in one spawning event, with only a dozen or so becoming adults. Since they are batch spawners, the larvae are left unprotected by the parents and suspended in the water column for the first few weeks, leaving them susceptible to predation by filter feeders and bad water quality. Once the larvae have reached the pediveliger stage, they will settle out and “walk” along the bottom of the estuary until they find a suitable place to call home, usually another oyster or hard substrate. After 1-3 years, the oyster will mature and begin batch spawning when conditions are ripe, and the cycle continues!
The Oyster Life Cycle – Maryland Sea Grant
Fish in the Lutjanidae (snapper) family are the perfect representative for batch spawning with fish. Snappers of all species are known to congregate and have mass spawning events typically around a full moon. The mutton snapper (Lutjanus analis) of South Florida and the Florida Keys are very well known for their ability to form massive congregations of tens of thousands of fish along the reef starting in April. Once the spawning commences, the mutton snapper will form a small subgroup of up to 20 fish in the late afternoon. This subgroup will travel to depths of up to 100ft to perform their spawning event. During this event, the female will signal to the males that she is about to release her eggs. The males will then rub up against the side of the female snapper, helping her release eggs while simultaneously releasing their milt (sperm). When the milt is released, the sperm is activated by the seawater and begins to swim. Eventually, the eggs are fertilized and an embryo is formed.
Massive Two-spot red snapper aggregation ready to spawn in Palau – R.J. Hamilton
18 – 24 hours later, the embryo is now a larval fish consisting of a yolk sac and lacking a mouth, eyes, and most organs. The yolk sac consists of amino acids and other nutrients that provide energy to the developing larvae. These larval fish have until their yolk sac runs out to develop the lacking vital organs, which usually takes between 24 – 48 hours. Only a very small percent of juvenile snapper make it to adulthood due to predation during their larval stage and predation as a juvenile. In fact, sharks and other large predators will prey on the snapper as they congregate and spawn, and filter feeders like manta rays are known to pass through an active spawning congregation to consume all the fertilized eggs and larval fish.
Well, I hope I didn’t scar anyone too badly. Batch spawning is fairly common in the marine biology world, and you can sometimes experience a spawning event without even knowing it. As for positives, this allows for many eggs to be fertilized at a time multiple times a season and for the larval fish and shellfish to be distributed through the estuary and reef via tides and waves. A major negative is the vulnerability of the juvenile and larval fish and shellfish, but the sheer number of eggs produced and fertilized helps outweigh the high potential for predation and unexplained loss of fertilized eggs and juveniles.
The Panhandle of Florida is home to many estuaries along the coast, from the Escambia Bay System in the west to the Apalachicola Bay System in the east. These estuaries are very important and are the intersection where rivers (fed from their respective watersheds) meet the Gulf of Mexico and contain many different organisms that help filter the waters before they reach the Gulf. These organisms include oysters, marsh plants, seagrasses, scallops, tunicates, and other invertebrates. In this two-part article, we will explore marsh plants, seagrasses, oysters, and scallops.
Marsh Plants
Marsh Plants is a broad term for a family of grasses that lines the shore and contain grasses like Smooth Cordgrass (Spartina alterniflora), Saltgrass (Distichlis spicata), and Gulf Cordgrass (Spartina spartinae). These plants help trap sediments before they enter the estuary and are excellent at erosion prevention. When the water encounters the plants, it slows the flow, and this allows for sediments to collect. Marsh Plants are a great tool for shoreline restoration and are a major part of the Living Shorelines Program. The roots of the plants are also very efficient at removing nutrient pollutants like excess nitrogen and phosphorus which are major influencers in eutrophication. Marsh Plants also absorb carbon dioxide from the atmosphere and have been tabbed as “superstars of CO2 capture and storage.” (CO2 and Marsh Plants)
Marsh Grass and Oyster Reef in Apalachicola, Florida – Thomas Derbes II
Seagrasses
Seagrasses are different than Marsh Grasses (seagrasses are ALWAYS submerged underwater), but they offer some of the same ecological services as Marsh Grasses. The term seagrasses include Turtle Grass (Thalassia testudinum), Shoal Grass (Halodule wrightii), Widgeon Grass (Ruppia maritima), and Manatee Grass (Syringodium filiforme) to name a few. Seagrasses help maintain water clarity by trapping suspended sediments and particles with their leaves and uptake excess nutrients in their roots. Seagrasses are very efficient at capturing carbon, capturing it at rates up to 35 times faster than tropical rainforests. (Carbon Capture and Seagrasses) They also provide habitat for crustaceans, fish, and shellfish (which can filter the water too) and food for other organisms like turtles and manatees.
Grassbeds are also full of life, albeit small creatures. Photo: Virginia Sea Grant
Oysters
Crassostrea virginica (or as we know them, the Eastern oyster) is a native species of oyster that is commonly found along the eastern coast of the USA, from the upper New England states all the way to the southernmost tip of Texas. Eastern oysters are prolific filter feeders and can filter between 30-50 gallons of water per day. As filter feeders, they trap nutrients like plankton and algae from the environment. In areas of high eutrophication, oysters can be very beneficial in clearing the waters by trapping and consuming the excess nutrients and sediments and depositing them on the bottom as pseudo-feces. With oyster farms popping up all over the Gulf Coast, the filtering potential of estuaries is on the rise. (Between the Hinge)
Oysters, The Powerful Filterers of the Estuary – Thomas Derbes II
Scallops
Bay Scallops (Agropecten irradians) were common along the whole Florida Gulf Coast, but their numbers have taken a recent decline and can only be found in abundance in the estuaries to the east of St. Andrews Bay in Panama City, Florida. Scallops make their home in seagrass beds and are filter feeders. While scallops do not contain the filtering potential of an oyster (scallops filter 3 gallons of water per day as an adult), they are still a key part of filtering the estuary. Just like oysters, scallops feed off of the suspended particles and plankton in the water column and deposit them as pseudo-feces on the bottom. The pseudo-feces also help provide nutrients to the seagrasses below.
Bay Scallop. Photo: FWC
I hope you enjoyed this first article on filterers in the estuary system. While oysters are known as the filterers of the estuary, I hope this has opened your eyes to the many different filterers that call our estuary home. Stay tuned for Part 2!
Day 2 of the Oyster South Symposium was the final day of presentations and the trade show, but it is also the day of the Shuck and Tell closing ceremonies. Another grey sky day greeted us, but the symposium was still full of oyster enthusiasts and farmers. Day 2’s talks focused more on marketing and the future of oyster farming, including discussion of a new program for Federal Crop Insurance and a panel of chefs discussing “What Chefs Want” when it comes to an oyster. The oyster disco ball also made an appearance, and I was finally able to snap a photo of that beauty!
Saturday’s talks started with a reflection of what Oyster South is and what it could be. Oyster South is a 501(c)(3) charitable organization that strives to connect communities and provide resources to support oyster farmers, cultivate thriving communities, and promote healthy waters (Oyster South’s Mission Statement Here). While South is in its name, the scope of Oyster South has become national with visitors and farmers from both coasts coming to collaborate and share stories of their oyster farms. I was able to talk with farmers from all over the USA, from California, Washington State to New Jersey, North Carolina and even Texas where oyster farming is still in its infancy.
After the reflection, we were treated to two awesome panels, one discussing what chefs look for in an oyster and another on making the most out of social media. Every chef has a different view of what they want in an oyster, but consistency and a certain salty yet umami taste came up as something they strive to serve. Social media also plays a major role in oyster farming and distribution. I remember when I was an oyster farmer, I quickly had to learn how to do social media as this was the best way to advertise and promote your product. Most people have Instagram or Facebook now-a-days, so being able to post your story and availability was always helpful in increasing your following and sales.
After the lunch break, we had a Three-Minute Tech Talk Session. We heard from graduate students that needed input from the oyster community on their research topics, oyster farm innovators discussing their newest and greatest creations to help oyster farmers, and I was even given the opportunity to talk about what extension can do for oyster farmers. After the tech talks, we heard about the federal crop insurance program for oyster farmers, as well as a great talk from Julie Qiu (a well-known oyster blogger, advocate, writer, and founder of the Oyster Master Guild) on oyster stewardship and how important it is to oyster consumers and the oyster industry. Beth Walton, executive director of Oyster South, closed out the talks with Oyster South Looking Forward, and the future of Oyster South and oyster farming is very, very bright.
Before the Shuck and Tell, I was able to grab a quick “linner” at an incredible restaurant named Cochon. I had previously worked with a chef that came from Cochon, and his stories were the reason I made a reservation. The food in New Orleans is top notch, and Cochon was the cherry on top of a great gastronomy tour.
When it comes to oyster parties, the Shuck and Tell is the ultimate oyster experience. Farmers from all over got together to shuck their product and tell their story of why they oyster farm and the story of the oyster being shucked at the wonderful Southern Food and Beverage Museum (aka SOFAB). I was blessed enough to jump in and help shuck for some passionate oyster farmers and learn more about their farms and history. A relatively new oyster farmer at Salt Revival Oyster Company arranged for a second line to come through SOFAB, and it was an incredible way to cap off a great Oyster South weekend. The Coalition to Restore Coastal Louisiana was there to make sure all shells were recycled and used for future restoration projects.
The 2024 Oyster South Symposium was definitely one for the record books. The turnout was fantastic, and the camaraderie and collaboration between oyster farmers, researchers, and enthusiasts was a sight to behold. A major thank you to Bill and Beth Walton for always putting on an incredible symposium, and a big thank you to all the farmers who took time out of their busy schedule to share their oysters and stories. The Oyster South Symposium is an annual event, so keep your eyes peeled for the next symposium. I hope to see you at the next one in 2025!
This year, the non-profit organization Oyster South held their annual Oyster South Symposium in the Big Easy, aka New Orleans. First stop was the Director’s Welcome at Sidecar Patio and Oyster Bar Thursday night. Oyster farmers, researchers, distributors, educators, writers and fans from all over USA were treated to New Orleans favorites like red beans and rice and jambalaya, but the star of the party was inside the bar area underneath a disco ball oyster. I wish I had taken a picture, but the lure of oysters from the Gulf, East, and West Coasts held my attention. Being able to jump coasts from oyster to oyster was quite an experience, and to have them freshly shucked right in front of you with a knowledgeable shucker took it over the top.
Friday we were greeted with gray skies, but you couldn’t tell from the vibe inside of the Contemporary Arts Center. When you walked in, you were immediately introduced to the trade show wall to wall with oyster equipment and other oyster related things. Once through the trade show, you could take a seat and listen to a plethora of oyster talks. We listened to reports of oyster mortality and the intensive efforts being taken to address this issue, a panel of farmers discussing how their peers can get an alternative source of income from catering and tours, oyster hatchery and farm research updates, and stories of oyster farmers and chefs on what an oyster means to them. The future of oyster farming looks very bright, and researchers are doing great things to help build the strength and resiliency of oyster farming. After the talks, we visited the trade show again and caught up with friends, old and new.
Tomorrow brings more talks, and the amazing Shuck and Tell closing ceremonies. Stay tuned for a Part 2 and Overall Thoughts.
Even though oysters have a hard shell that even humans have a hard time opening, they do have natural predators in our waters that can easily slurp up a couple dozen. Your usual oyster slurping suspects include oyster drills, blue crabs, and fish (such as the black drum). In this article, we will focus on the 3 major predators that contribute the most toward natural mortality in oysters here in the Florida Panhandle.
The Oyster Drill
When it comes to the marine snail world, oyster drills would win an oyster-eating contest. Oyster drills (Urosalpinx cinerea) are marine gastropods that grow to sizes of 0.5 – 1 inch. Oyster drills can be found all along the Atlantic coast of North America and the Gulf of Mexico, and they have been accidentally introduced into Northern Europe and the West Coast of North America. These small but mighty snails have become specialized in consuming oysters. Using chemotaxis, they locate their prey oyster. Once they find it, they secrete an enzyme to soften a portion of the oyster shell. Once softened, they drill into the shell and siphon out oyster meat. Oyster drills have been known to occur in great numbers when the environmental conditions are prime and can wipe out not only entire oyster beds but also clam beds. Oyster drills do have natural predators as well, but these predators also consume oysters.
The Blue Crab
Most of us know about the very tasty blue crab (Callinectes sapidus), but many do not know that it is a major consumer of oysters, especially on an oyster farm. Blue crabs are a decapod crab (meaning 10 legs) of the swimming crab family Portunidae. Blue crabs can indeed swim and their last leg on each side has developed into what are called paddle fins. Juvenile oysters are the main target for blue crabs, but they have been observed eating adult oysters when given the opportunity. On an oyster farm, blue crabs can get into an oyster bag when they are very small. Once inside, they have an all-you-can-eat buffet of oysters, and can quickly wipe out a bag of oysters. Oyster farmers have to be very cautious and must either remove the blue crabs manually or dry their bags out in hopes of destroying any blue crabs. Blue crabs can easily break open a juvenile oyster, but for them to consume an adult oyster, they will wait for it to open to feed before shoving a claw inside of the shell to keep the oyster open. Once they have their claw in the shell, they will use their other claw to consume the oyster.
The Fish
Even though oyster-eating fish like black drum (Pogonias cromis) and sheepshead (Archosargus probatocephalus) are much bigger than snails and crabs, they tend to contribute less to oyster mortality on oyster farms. However, during certain seasons wild oysters and other shelled invertebrates can contribute up to 33% of a black drum’s diet (more here). Fish will usually congregate around oyster beds and farms, but they are more interested in consuming oyster predators like crabs and snails. The black drum is a fish that was built for oyster consumption. While black drum lack sharp teeth, they have crushing plates in their throat that can crush an oyster shell which allows the drum to eat the oyster meat. Many oyster farmers welcome these fish on their farms as a free source of anti-fouling and predator deterrent (in the form of consumption).
There are many more oyster predators, but these are the top 3 in terms of threat and ability to consume/do detriment to oyster beds and farms in the Florida Panhandle. While oyster drills rank up towards the top, crabs and fish can also greatly contribute to natural mortality.
References
Flimlin, G., & F Beal, B. (n.d.). Major Predators of Cultured Shellfish. https://shellfish.ifas.ufl.edu/wp-content/uploads/Major-Predators-of-Cultured-Shellfish.pdf