From Seed to Shuck – More Oyster 101

From Seed to Shuck – More Oyster 101

When you hear about oyster farming, you typically hear the word “seed” and how it is highly important to the future of the farm. While it might not be a typical seed that produces agricultural crops like corn, this seed is a living, breathing (albeit in the water) organism that produces a beautiful, cupped oyster. Depending on market size demand and requirements, it could take anywhere from 8 to 24 months to reach “shucking ready” size. Let’s take a dive into the timeline of an oyster, from seed to shuck.

Cooler Full of Seed Headed To Farm
A cooler full of R6 oyster seed headed out to the farm – Grayson Bay Oyster Company

Oyster farmers typically buy seed from an oyster nursery or hatchery, where they carefully spawn male and female oysters together in individual spawning chambers. Depending on the farmer’s needs, they can produce either diploid or triploid oyster larvae (more on triploids next week). These larvae are free-swimming for the first 2-3 weeks of their life until they develop into pediveligers (Oyster 101). Hatcheries will, for lack of better terms, mix the pediveligers with very tiny grains of ground-up oyster shells. These pediveligers will then attach to a single grain and begin to form into a “seed” oyster. Seed costs range and vary from year to year, and this cost is usually one of the biggest financial purchases oyster farmers can make. Seed is sold by size, starting at 6 millimeters (typically called size R6), and by increments of 1,000. Hatcheries and nurseries are located all along the Gulf Coast, but Florida law requires seed put in the Gulf of Mexico waters and estuaries must come from Gulf of Mexico hatcheries, and the same rules apply to Atlantic waters.

Oyster Seed
Oyster Seed (>R16) – Thomas Derbes II

Once purchased, these seed oysters make it to their homes in beautiful nutrient-rich waters and grow at a steady rate, and can reach an overall size of 2 inches in 4 to 9 months. During those months, the seed are filtering gallons of water per oyster per day, helping sequester carbon in their shells and consuming large amounts of plankton and algae that could contribute to the eutrophication of the bays. Oyster farmers will check on the seed almost weekly, changing bag mesh sizes and sorting the seed by size. Farmers will also take this opportunity to check for any oyster predators and swiftly evict them from their all-you-can-eat buffet. Sorting is done by using a “tumbler” that has a long drum with holes of varying sizes. This tumbler also helps clean the oyster and chip away at the lip of an oyster shell, causing the oyster to grow deeper and create a beautiful cup.

Farmed oysters do not have a size limit, but most farmers stick to a 2.5 to 3-inch size oyster. These oysters have filtered over 7,000 gallons of estuary water individually and sequestered a very generous amount of carbon, in the form of calcium carbonite (more here), in their shells in their first year of life. Once deemed ready for harvest, farmers will pull them out of the water and get them quickly in the fridge, following strict biosecurity guidelines and regulations to provide a safe product year-round.

Oysters of varying size
Some oysters are fast growers! These were apart of the same spawn. – Thomas Derbes II

And there you have it, from seed to shuck. With the holidays coming up, and seafood sometimes being a part of the holiday plans, reach out to the local oyster farmers in your area to reserve a dozen or two for your favorite uncle. You can also wow the crowd with this very fancy mignonette recipe below! 

Lemon Champagne Mignonette

Juice From 2 Local Meyer Lemons (They’re in Season!)

1 Shallot Chopped Finely

½ cup Champagne Vinegar

¼ cup Red Vinegar

1 tbsp each of Green and Pink Peppercorns 

24 Local Farm Raised Oysters (For the Environment!) 

1.       In a bowl, add the juice of Meyer lemons and shallots. Let it marinate for 10 minutes.

2.       Add champagne vinegar, red vinegar, and peppercorns to the lemons and shallots.

3.       Chill for at least 30 minutes in the fridge.

4.       Shuck oysters and top with freshly made mignonette. Enjoy!

Between The Hinge, What is an Oyster?

Between The Hinge, What is an Oyster?

They’re consumed worldwide, from 5-star exclusive restaurants overseas to your flip-flop beach bars right here in the Florida Panhandle. They have many different preparation techniques, such as plain and simple with a squeeze of lemon and a dash of hot sauce to “dip-your-bread-innit” chargrilled parmesan Cajun garlic butter (recipe below). However, many of their consumers actually don’t know what an oyster is, and as luck would have it, here’s a quick oyster 101!

Anatomy

Many people ask me what exactly an oyster is? Before becoming an oyster farmer, I always referred to them as “rocks with tasty meat in them,” but I couldn’t be further from the truth. Oysters are actually complex individuals that go through many metamorphoses and transitions throughout the first 2-4 weeks of their life, this includes a period of free-swimming followed by walking around with its “foot.” Let us look under an oyster’s top shell and identify some key organs.

Anatomy of an oyster
The anatomy of Crassostrea virginica (Eastern oyster) – Thomas Derbes

Mantle – A very thin, dark, fleshy layer of tissue that surrounds the oyster’s body. This is where shell formation begins!

Hinge – The shucker’s worst nightmare. This, along with the adductor muscle, is responsible for the opening and closing of the shell.

Adductor Muscle – Helps keep the oyster shut and protected from any predators. This part must be severed in order to fully open the oyster.

Gills – Thin, delicate structures found inside the body of the oyster. They serve a crucial role in respiration and feeding. Gills are shaped like tiny, finger-like projections that provide a large surface area for oxygen extraction, and they also trap and transport food towards the mouth.

Heart – Oysters have a simple circulatory system with a three-chambered heart that pumps colorless hemolymph throughout their body to distribute nutrients and oxygen.

Biology

Crassostrea virginica (or as we know them, the Eastern oyster) is a native species of oyster that is commonly found along the eastern coast of the USA, from the upper New England states all the way to the southernmost tip of Texas. Eastern oysters prefer an estuarine environment (mid-salinity) but can be found in some coastal areas with higher salinities, especially in south Florida. As filter feeders, they trap nutrients like plankton and algae from the environment and require a habitat that can handle their filtering power (30 gallons per day).

The first 2 – 3 weeks of an oyster’s life is completely different than most people expect from an oyster. Females and males coordinate their spawning time with different cues and release massive amounts of eggs and sperm into the water. This type of spawning behavior is considered batch spawning, and a majority of the fertilized eggs perish before adulthood due to predation and other environmental causes. Once fertilized, the fertilized eggs go through multiple divisions and approximately 12-24 hours later, the free-swimming trochophore larvae are formed. These larvae swim around in the water column for 2-3 weeks, developing their shell and forming into a veliger, which closely resembles their adult stage. Once ready to settle, the pediveliger is formed. The pediveliger has a “foot” and walks around the bottom, looking for a suitable place to settle (usually another oyster). Once a suitable location has been found, the foot will secrete a substance to cement them into place and the pediveliger will metamorphose into a juvenile oyster, also known as spat. Oysters can grow very rapidly after their settlement, with oysters reaching 3 inches (usual harvest size) within 18 months.

Oysters have been known to establish massive reefs in estuaries, but their numbers have been on a rapid decline across the southern USA since the 1960s. These oyster reefs provided a massive natural, biological filter in the bays, and also were home to many juvenile and adult fish and crustaceans. Currently, there are many agencies and foundations that have oyster restoration at the top of their agenda, and the future is looking brighter for the oyster populations.

Oyster Life Cycle
The Oyster Life Cycle – Maryland Sea Grant

Pearls of Wisdom

I hope this quick oyster 101 helped shed light on the otherwise unknown life of the Eastern oyster. With the holidays coming up, make sure you grab some oysters to shuck and share with family and friends, and look at their shocked faces when you bust out all this wonderful oyster knowledge. Who knew that an oyster was much, much more than a “rock with some meat in it.”

Chargrilled oysters kissed with flame
Chargrilled “DYBI” Oysters Kissed With Flame – Thomas Derbes

“Dip-Your-Bread-Innit” Chargrilled Oysters

24 Oysters

2 Sticks of Butter

2 Tablespoons (or more) of Cajun Seasoning (Uncle Tony, Zatarains, etc)

½ cup of Hot Sauce

½ cup of Lemon Juice

1 Tablespoon of Granulated Garlic

2 cups of Mozzarella Cheese

½ cup of Parmesan

1 Cup Panko (The Razzle-Dazzle)

Sliced Bread (Baguette, Wonder, any bread honestly)

———————————————————————————————————

  • Shuck Oysters – Many instructional videos online, and make sure you use an actual oyster knife, clam knives are no good!
  • Add butter to pan/pot. Melt the butter on medium, then add everything but the oysters and cheese to the butter.
  • Start your grill, charcoal/wood is best for adding a smoky flavor. Once the butter mixture is made, add oysters to the grill and spoon your butter mixture into the oysters.
  • Mix the cheeses together and add the cheese mixture to the oysters once the butter is spooned on. For a little razzle-dazzle, mix 1 cup of panko into the cheese mixture.
  • Cook oysters until bubbling. Make sure to not overcook the oysters, and once you seed the mixture bubbling, they are good to remove.
  • Eat the oysters and dip your bread in the shell to soak up the juices. You won’t regret it.
Farmed Oysters Never Go Out Of Style

Farmed Oysters Never Go Out Of Style

Growing up in the South, I was exposed to many “Old Wives’ Tales,” ranging from not cleaning your house or clothes on New Year’s Day to the one that everyone, including the northern states, knows, “don’t consume oysters in months without an R.”  While most “tales” are full of superstition, the “R” tale was one of biosecurity, and was mainly truthful until two new types of “R” came about; Regulations and Refrigeration. The tale came about due to the rise in food poisonings from shellfish in the warmer summer months that do not contain a “R,” such as June and July. The rise in food poisoning came about from the practices used by the oyster “tongers” at the time. Commercial harvest of wild oysters is a very labor-intensive job that requires long days on the water and constant tonging, measuring, and sorting of oysters as they come off the bottom. During the summer, the oysters would sit on the deck of the boat for hours in the heat, causing microorganisms and bacteria to flourish inside the closed oyster.  Bacteria, like Vibrio, would replicate to harmful levels inside of the oysters and when consumed by a human, could cause life-threatening illnesses.

That was then, and this is now. While the consumption of wild Florida oysters during the summer is not allowed (closed harvest season for wild oysters during the summer in Florida), you can still find oysters from all over the US, and farmed oysters from Florida are still allowed to be consumed during the summer. Biosecurity is a major factor involving food production and aquaculture, and without biosecurity, the consumption of Florida-farmed oysters would be prohibited. Oyster farmers in Florida must follow a very rigorous biosecurity plan that includes State-issued harvest times, water-to-refrigeration requirements, reporting of harvest and planting, and twice-daily temperature monitoring requirements. The regulations for harvest times and refrigeration requirements have scientific backing, showing a statistical difference in Vibrio concentrations between properly handled oysters and neglected oysters, with properly handled oysters having little to no concentrations of Vibrio. For instance, during the summer months, oyster farmers must have oysters harvested and in the cooler before 11am and down to 45°F within 2 hours of storing in cooler.  

Boat Full of Harvest Oysters
A farmer returns early morning from the lease with harvest oysters covered by burlap. This keeps the oysters “cool.” (Photo by: Thomas Derbes)

While there is an increased concentration of harmful bacteria during these warmer months, properly cared-for oysters help limit the growth and proliferation of the bacteria. Another myth is that Vibrio doesn’t exist in cold, winter waters. Vibrio can exist year-round, and people with health risks, including immune-suppressed patients and those with diabetes, should exercise extreme caution when consuming raw seafood. When purchasing seafood for personal consumption, make sure to bring a cooler with ice and place your seafood above the ice, making sure to not allow any fresh water to touch the seafood. When storing seafood at home, make sure they are in a container that can breathe, and cover with a moist paper towel to keep their gills wet. Oysters are typically good for 10-14 days after the harvest date, so make sure you check the tags and consume within time.

Next summer, when you see farmed oysters on the menu, remember the new R’s and order a couple dozen for the table. The need for support from your local oyster farmer is most needed during those months without R, so slurp them down all summer and thank your local oystermen and women!

Oyster with French Mignonette Sauce
Locally Farmed Oyster with French Mignonette (Photo by: Kelly Derbes)

Easy French Mignonette Recipe

Recipe for 2doz Oysters

¼ cup Red Wine Vinegar

¼ cup Champagne Vinegar

1 tablespoon of Finely Chopped Shallot

1 teaspoon of Fresh Crushed Black Pepper

Juice of ½ Lemon

Combine all ingredients together. Spoon over shucked, chilled raw oysters.

It’s Been a Cruel Summer, Especially for Southern Oyster Farmers

It’s Been a Cruel Summer, Especially for Southern Oyster Farmers

There is a term that all oyster farmers dislike, it is almost like that one villain from a famous book/movie series where they shouldn’t say his name. That term is “unexplained spring/summer mortality” and it has been a growing issue along with the expansion of oyster farming throughout the southeast. While the art of oyster farming has been around since the time of the Romans, it is a relatively new venture here in the Gulf of Mexico, and Florida is home to over one hundred oyster farms. These farms are meticulously cared for by the oyster farm crew, with many different anti-fouling techniques and biosecurity measures in practice to provide the customer with a safe, clean product that you can consume even in the months without an R (another article on that coming later). Each year, farm managers can expect a 10-30% mortality event during the transition from winter into spring/summer, hence the term “unexplained spring/summer mortality.” Researchers and scientists from all over the southeast have been actively working to find a cause for this phenomenon, but the answer has been hard to find.

Dead, market ready oysters from one bag. Cause of death, “Unexplained Mortality Event 2022”
Photo by: Thomas Derbes II

Our Pensacola Bay has been a hotbed for oysters lately; The Nature Conservancy recently constructed 33 oyster beds along Escribano Point in East Bay, the establishment of the Pensacola & Perdido Bay Estuary Program, acquisition of a $23 million restoration grant with $ 10 million towards 1,482 acres of oyster restoration, and the establishment of oyster farms and hatcheries. In Pensacola Bay, there are currently 5 oyster farms in operation, one of those farms being a family-owned and operated Grayson Bay Oyster Company. Brandon Smith has been managing the business and farm for over 4 years now and has experienced mortality events during those prime spring/summer months. In recent years, they have experienced mortality events ranging from minimal to what many would consider “catastrophic,” and reports from around Florida and the Southeast convey a similar message. Concerned for not only the future of his family farm, but other oyster farms in the Southeast, he has been working with the most experienced institutions and groups in 2022 to possibly get an answer on his and other local “unexplained mortality events.” Each road led to the same answer of “we aren’t quite sure,” but this didn’t deter Smith or other the farmers who are dealing with similar issues.

In 2023, Smith was invited to participate in a Florida-Wide program to track water quality on their farm. This project, led by Florida Sea Grant’s Leslie Sturmer from the Nature Coast Biological Station in Cedar Key, Florida, hopes to shed some light on the changes in water quality during the transition from winter to spring and spring to summer. Water samples have also been taken weekly to preserve plankton abundance and the presence of any harmful algae if a mortality event does occur. With the hottest July on record occurring in 2023, temperature could play a role in mortality events, and now researchers are equipped with the right tools and open lines of communication to possibly find a solution to the problem.

3-month-old seed being deployed out on Grayson Bay Oyster Company’s farm in Pensacola, Florida (2023).
Photo by: Thomas Derbes II

As with traditional farming on land, oyster farming takes a mentally strong individual with an incredible work ethic and the ability to adapt to change. The Southeast has a resilient system of oyster farmers who display these traits and continue to put their noses down and “plant” seed every year for the continuation of a growing yet small industry, even through the hardest of trials and tribulations. Through collaboration with local and state institutions, stakeholders, programs, and citizens, oyster farmers are hopeful that they can solve this “unexplained mortality event” and help develop resilient farming techniques. An important message is local farms that have environmental and economic impacts cannot exist without the support of their community.

If you’re interested in tracking water quality on select farms, including Grayson Bay Oyster Company, the website is https://shellfish.ifas.ufl.edu/farms-2023/ and it is updated monthly.        

The World is Your Oyster

The World is Your Oyster

There are a lot of good oyster quotes. One I remember from childhood is the saying to only eat oysters in months with the letter “r,” basically September to April. I believe this originated when all oysters came from the wild. This was a way to avoid the hot months that may have led to a watery oyster, or even food poisoning. Today, with the rise of oyster aquaculture and refrigeration, oysters can be enjoyed year-round.

The Florida Fish and Wildlife Conservation Commission recently made the tough decision to shut down wild oyster harvesting in Apalachicola, FL for up to five years in response to a struggling bay oyster population threatened by water flow issues and overharvesting. This was devastating news to an area that historically produced 90% of the state’s oysters and 10% of the nation’s. On the bright side, oyster aquaculture has been steadily growing in the area and is working hard to fill some of the gap.

A team of Florida Sea Grant Agents recently made a visit to Apalachicola to learn more about this historic oyster town and how the industry is adapting. Our first stop was Water Street Seafood, the Florida Panhandle’s largest seafood distributer. Water Street provides a wide diversity of both fresh and frozen seafood, including oysters, delivering daily in northwest Florida and shipping worldwide. We visited their oyster processing facility where we saw mesh bags of oysters brought in from Louisiana and Texas. The oysters, both farmed and wild caught, are carefully cleaned and sorted, with some going to the live, halfshell, restaurant market and some shucked onsite for the shucked market.

Next, we visited one of the many new oyster aquaculture farms in the area. Oysters farms are permitted by the state and are located in waters that have been carefully evaluated for their suitability for oyster production. Small plots are leased to the farmer allowing off-bottom production in mesh bags teathered with anchors in the shallow, productive bay waters. Oyster farmers tend to their crop by turning the bags regularly to reduce fouling of the oyster shell, and sorting by size as the oyster grows. Oysters take between eight to eighteen months to reach a harvest size.

Given the increasing demand for oysters by tourists and locals, we can thank aquaculture for keeping these tasty gems on our plates. If you are lucky enough to find some locally raised oysters on the menu, take the opportunity to try something new and support a local farmer.

An oyster farmer visiting his lease to monitor his crop. (credit: L. Tiu)
T

Fresh live oysters from an Apalachicola Oyster Farm (credit: L. Tiu)

Oyster bag holding cooler at Water Street Seafood with green bags holding wild caught oysters and purple bags holding farm raised oysters. (credit: L. Tiu)

 

Oyster Reef Mapping in the Pensacola Bay System, how is oyster reef mapping done?

Oyster Reef Mapping in the Pensacola Bay System, how is oyster reef mapping done?

Santa Rosa Portion of the Oyster Mapping and Assessment Project

Santa Rosa County R.E.S.T.O.R.E. has funded the SRC Oyster shell recycling program and the Pensacola, East and Blackwater Bays Intertidal and Subtidal Oyster Reef mapping and Assessment projects. The Nature Conservancy is managing the oyster reef mapping and assessment project and has contracted with MREC Environmental, LLC to get the work done.

The purpose of the project is to map and assess the condition of known and potential intertidal and subtidal oyster reef resources in the Santa Rosa County portion of the Pensacola Bay system. Results of this mapping project will establish a baseline of the existing locations and condition of oyster resources in SRC. This information will help to guide future restoration projects.

Subtidal oysters are harvested in clumps and are culled using a large knife or hatchet. Photo credit: Calvin Sullivan

 

Intertidal reefs are typically exposed at low tides and found along the shoreline of our bay system. Sub-tidal reefs are found under water. Gabe Johnson, owner of MREC Environmental has verified existing intertidal reefs using a jet-ski in the fall of 2020.  Our bay system does not have as many natural intertidal reefs as in other parts of Florida. There are existing intertidal reefs that have been installed for shoreline protection and habitat enhancement.

Gabe Johnson and the crew of MREC Environmental are working to complete the initial bottom survey in early 2021. He has set up grids based on historic locations of oyster reefs throughout the Santa Rosa County portion of the Pensacola Bay system. He will then verify his findings by diving sites where oyster shell was found during the bottom survey.

 

From left to right: Dale, Gabe and Reese of MREC Environmental. Phot credit: Chris Verlinde

Side scan sonar and echosounder along the side of the boat. Photo Credit: Chris Verlinde

Gabe and his crew are using one Side Scan Sonar, an Edgetech 4125i to map images of the bottom. The other instrument they are using is a Singlebeam Hydrographic Echosounder (Teledyne Odom Echotrac CV100). The echosounder is used to collect water depth data and contours of the water bottom. The echosounder is connected to a transducer. The side scan sonar and the transducer from the ecosounder are placed along the side of the boat and submerged while the boat travels over the transects to collect the underwater images and parameters.

 

 

The pink lines are the transect lines of grid #25. Photo credit: Chris Verlinde

About two thirds of grid #25 are completed. Photo credit: Chris Verlinde   

Dale dropping the pole to assess bottom characteristics. Photo credit: Chris Verlinde

On a cold day in December 2020, Gabe and his crew covered 149.3 acres in grid #25, just west of the power lines in East Bay. Grid 25 included 32 parallel transect lines (2468 feet long), spaced 100 feet apart. This grid was completed in approximately three and a half hours by running the boat along each transect and recording data. In addition to the electronic data, one of the crew members used a fiberglass pole to assess bottom conditions. Approximately, every 10 feet or so, the pole guy would lower the pole and shout the condition of the bottom, either sand, mud, or shell. Gabe then recorded the point and code on his mapping software.

Image from the side scan sonar showing a sand bottom. Photo credit: Chris Verlinde

Side scan image of bottom with showing potential shell (the darker scatter area). Photo credit: Chris Verlinde

The raw data will be compiled into maps and a report that will be used to based future oyster fishery and habitat enhancement restoration efforts in East, West and parts of Escambia Bay.