Coastal wetlands are some of the most ecologically productive environments on Earth. They support diverse plant and animal species, provide essential ecosystem services such as stormwater filtration, and act as buffers against storms. As Helene showed the Big Bend area, storm surge is devastating to these delicate ecosystems.
Hurricane Track on Wednesday evening.
As the force of rushing water erodes soil, uproots vegetation, and reshapes the landscape, critical habitats for wildlife, in and out of the water, is lost, sometimes, forever. Saltwater is forced into the freshwater wetlands. Many plants and aquatic animal species are not adapted to high salinity, and will die off. The ecosystem’s species composition can completely change in just a few short hours.
Prolonged storm surge can overwhelm even the very salt tolerant species. While wetlands are naturally adept at absorbing excess water, the salinity concentration change can lead to complete changes in soil chemistry, sediment build-up, and water oxygen levels. The biodiversity of plant and animal species will change in favor of marine species, versus freshwater species.
Coastal communities impacted by a hurricane change the view of the landscape for months, or even, years. Construction can replace many of the structures lost. Rebuilding wetlands can take hundreds of years. In the meantime, these developments remain even more vulnerable to the effects of the next storm. Apalachicola and Cedar Key are examples of the impacts of storm surge on coastal wetlands. Helene will do even more damage.
Many of the coastal cities in the Big Bend have been implementing mitigation strategies to reduce the damage. Extension agents throughout the area have utilized integrated approaches that combine natural and engineered solutions. Green Stormwater Infrastructure techniques and Living Shorelines are just two approaches being taken.
So, as we all wish them a speedy recovery, take some time to educate yourself on what could be done in all of our Panhandle coastal communities to protect our fragile wetland ecosystems. For more information go to:
Green stormwater infrastructure at Cascades Park in Tallahassee, Florida. Image: T. Jones, UF/IFAS.
Join us for a two-part webinar series on Managing Stormwater in a Changing FL Panhandle on May 1, 2024 from 8:30-11:30 am CST (9:30-12:30 pm EST), and May 15, 2024 from 8:30-11:30 am CST (9:30-12:30 pm EST).
We are also offering two optional no-cost field tours of stormwater management sites in northwest Florida. The first will be held on May 3 in Pensacola to the Escambia County Central Office Complex, and the second on May 22 in Tallahassee to the Upper Lake Lafayette Nutrient Reduction Facility (aka Weems Pond). Detailed information as well as how to register for both the webinars and the field tours is found below.
Webinar series: Information and registration
Please register for the webinar series here: Eventbrite link Once in the registration site, you will have to register for both dates separately.
May 1: Day 1 will focus on Green Stormwater Infrastructure (GSI) and its maintenance, as well as presentations and discussion on the ecological function of GSI+LID.
May 15: Day 2 will focus on implementing GSI and LID at the community level, with presentations about ongoing research on extreme sea levels and effects on flooding events, a resiliency case study on Cedar Key and funding opportunities for GSI and LID through FDEP.
PDHs and CEUs offered:
4 Professional Development Hours (PDH) will be offered through the Florida Board of Professional Engineers. Two PDHs will be offered for Day 1 and two for Day 2.
4 Continuing Education Units (CEU) will be offered for Pesticide Applicators through FDACS in these categories: Ornamental & Turf, Private Applicator Ag, Right-of-Way, Aquatic, Natural Areas, Commercial Lawn & Ornamental, Limited Commercial Landscape Maintenance, Limited Lawn & Ornamental and Limited Urban Fertilizer.
The webinar is free for those not seeking PDHs or CEUs. For those seeking PDHs or CEUs, the cost is $50 for Day 1, and $50 for Day 2.
Field Tours: Information and registration
Please register for each tour separately through the Eventbrite links provided.
May 3 Pensacola Tour: Join us for a tour of the Escambia County Central Office Complex, a LEED Gold certified building with pervious pavement, energy efficient design, and the largest green roof in Florida. Registration: Pensacola Field Tour
May 22 Tallahassee Tour: Join us for a tour of the Upper Lake Lafayette Nutrient Reduction Facility (aka Weems Pond) which captures sediment and trash from a large upstream drainage basin and uses modern treatment methods to filter the stormwater before it enters a natural system. The tour will be led by the City of Tallahassee Stormwater Planning team. Registration: Tallahassee Field Tour
We look forward to your attendance! Please contact Andrea Albertin if you have any questions at (850) 875-7111 or via email: albertin@ufl.edu
Summertime always makes me think of the supermarket. At least one time each of the past few summers, I clearly remember being at the supermarket during a rainstorm and watching the water wash over the parking lot, talking with all the other people debating whether to run to their car with a buggy full of food. Supermarkets, home goods stores, medical facilities, libraries, and shopping centers all provide important services that we depend on for our everyday life, but their development has altered the natural processes that control the movement of water from the landscape to creeks and ultimately to the bays and bayous around us (collectively referred to as receiving waters). Concrete, asphalt, and building roof surfaces are impervious, meaning that water cannot pass through them. As a result, more water washes off the rooftops, parking lots, driveways, and roads than before the area was developed. Less water sinks into the ground to move slowly toward receiving waters and to recharge aquifers. More impervious surface leads to more runoff to receiving waters, resulting in greater erosion and higher levels of pollutants like nitrogen, phosphorus, and silt in these waterways. These extra pollutants from the landscape and from eroding stream banks have harmful effects many types of organisms that call these waterways home.
New development in Florida is required to include features that “treat” a fraction of the surface water that runs off impervious surfaces before flowing into receiving waters. Treating surface water runoff means holding it back and preventing it from running quickly off the developed landscape; as it is held back, some pollutants may settle out or be consumed by plants. Treatment is commonly accomplished through features like dry retention basins or wet detention ponds, where water is stored and then slowly moves through soil pathways toward receiving waters. These features are common parts of our developed landscape: the big pond behind the supermarket or in front of the new truck stop, or the grassy pit next to the gas station. While these satisfy regulations, they occupy a considerable amount of land, typically are aesthetically lacking, and may not actually reduce pollutant runoff or stormwater volume as intended. They also can be neglected and become a nuisance in the landscape.
Nature-based stormwater infrastructure projects can play an important role in protecting communities in northwest Florida from the effects of heavy rainfall that occurs periodically in the region. Nature-based stormwater projects are designed primarily to incorporate the natural processes of infiltration that occur in undeveloped areas in the developed landscape, treating stormwater by reducing volumes of surface runoff and concentrations of pollution that could otherwise flow directly into receiving waters. Depending on their design, these features can also provide aesthetic enhancements that can increase the value of properties and the overall wellbeing of the communities where they are implemented. When used in coordination, nature-based projects such as roadside treatment swales, bioretention cells, rain gardens, green roofs, and porous pavement can provide similar levels of stormwater treatment as dry retention basins and detention ponds while also enhancing the aesthetic, recreational, or functional potential of the landscape.
Local government and extension staff across northwest Florida are working to introduce more nature-based stormwater projects into the panhandle landscape. To learn more about recent demonstration projects that have been implemented in our region, visit the WebGIS project https://arcg.is/1SWXTm0.
Join us for a two-part webinar series: Managing Stormwater in a Changing FL Panhandle 2023 on May 3 from 8-11 am CST (9-12 pm EST), and May 17 from 8-11 am CST (9-12 pm EST). For those that have attended in previous years, we have a lot of new material to present and discuss.
May 3: Session 1 will focus on Green Stormwater Infrastructure (GSI) and its maintenance, as well as presentations and discussion on the ecological function of GSI+LID (Low impact Development) and the Community Rating System
May 17: Session 2 will focus on implementing GSI+LID at the community level, with presentations and discussion on updates and opportunities for LID+GSI in Rules and Regulations, available funding and educational resources for project implementation and community-based social marketing.
PDHs and CEUs offered:
4 Professional Development Hours (PDH) will be offered through the Florida Board of Professional Engineers. Two PDHs will be offered for Day 1 and two will be offered for Day 2.
4 Continuing Education Units (CEU) will be offered for Pesticide Applicators through FDACS in the following categories: Ornamental & Turf, Private Applicator Ag, Right-of-Way, Aquatic, Natural Areas, Commercial Lawn & Ornamental, Limited Commercial Landscape Maintenance, Limited Lawn & Ornamental and Limited Urban Fertilizer.
The webinar is free for those not seeking PDHs or CEUs. For those seeking PDHs or CEUs, the cost is $50 for Day 1, and $50 for Day 2.
We look forward to your attendance! Feel free to contact Andrea Albertin if you have any questions: albertin@ufl.edu or (850) 875-7111
The local Community Collaborative Rain, Hail, and Snow network is seeking interested citizen scientists to participate in the collecting weather data. See the notice below from local coordinator, Larry McDonald, for more information:
Citizen scientists interested in collecting rain data utilized by organizations all over the country use this type of rain gauge. Photo credit: Larry McDonald, CoCoRAHS
Weather forecasting depends on taking readings and measurements from the atmosphere. And it’s not just professionals, like meteorologists, who measure rainfall, temperatures, and humidity levels. You can, too! The Community Collaborative Rain, Hail, and Snow network (CoCoRaHS) allows everyday citizens to participate in weather data collection by measuring daily precipitation/rainfall totals at their own homes or workplaces. Using a special rain gauge that provides great detail in detecting rain amounts, CoCoRaHS observers submit rain observations online to a national network… along with over 20,000 participants in the U.S., Canada, and the Bahamas. Precipitation amounts are then evaluated for many needs by national, regional, and local weather forecasters, researchers, drought and flood monitoring, and agricultural interests. Rainfall data submitted can also be used in forecasting to predict the possibility of flash flooding for local flood prone areas.
A CoCoRaHS observer simply needs to purchase the approved rain gauge (costing from $30 to $40), mount the gauge in an open area away from roofs, fences, and vegetation, and simply collect rain that falls directly from the sky over a 24-hour period. Once each day, between 5:30 AM and 9:00 AM, the gauge is checked for rain with the amount recorded and submitted to the CoCoRaHS website. Missing a day or more is okay, but the more you report, the better the overall data becomes for your area. New and active CoCoRaHS observers are needed throughout Escambia and Santa Rosa Counties.
Those interested in possibly joining CoCoRaHS as an observer can obtain more information by visiting https://cocorahs.org/. You can also contact the CoCoRaHS local volunteer coordinator for Escambia and Santa Rosa Counties by emailing escambia_fl_cocorahs@icloud.com
“Someone dumped oil in the creek behind my house!” I had dozens of people call with that exclamation when I was a field inspector for the Florida Department of Environmental Protection’s (FDEP) wetlands compliance program. A significant portion of the job entailed responding to concerns and complaints from citizens regarding damage to wetland areas. In the field, I would come across an oily film along creeks in rural, near-pristine conditions in northern Holmes County and in heavily populated neighborhoods in the tourist hot spots of Destin and Panama City. The first time I saw it, I was taken aback. A shiny, rainbow sheen is something you might expect in an oil-soaked parking lot, not a relatively untouched body of water.
The reaction between iron, native bacteria, and oxygen can produce this orange sheen and filamentous material in streams and groundwater (as it exits the soil). Photo credit: Carrie Stevenson, UF IFAS Extension
Thankfully, an experienced colleague explained the workings of iron-oxidizing bacteria to me, and I was able to allay the fears of all those frantic homeowners. All the places I’ve ever seen evidence of iron bacteria on the water were adjacent to wetlands with some level of iron in the soil. The bacteria essentially “eat” ferrous iron, which is common and able to react with other elements in oxygen-free (anaerobic) environments. Wetlands are classic examples of anaerobic soils, and the mucky conditions of a stream floodplain are ideal for iron bacteria. These are naturally occurring, harmless bacteria that gain energy by breaking down iron available in the soil. In addition to the oily film, side effects of iron-oxidizing bacteria can include a swampy odor, a reddish filament, or red chunks of iron. In large amounts, these byproducts can clog wells if present in pipes. This can be problematic and prevent water flow, but the iron and bacteria are not threats to human health
A colleague with Escambia County recently responded to a homeowner call about bright orange water flowing out of their front yard. While not the typical creek location, environmental conditions were absolutely suited for this phenomenon. Their neighborhood is situated adjacent to a large wetland area, and several of the homes have French drains in the backyards that drain out to the street. During heavier rainfalls, excess groundwater enters those pipes, picks up iron bacteria in the soil, and exits to the surface along the road. The red-stained curbs are evidence that iron is common in the local soil.
When touched, the sheen produced by iron bacteria will fracture. This is an easy way to differentiate it from actual oil. Photo credit: City of Kirkland, Washington
While it’s possible someone could dump oil in a backwoods area (and if you do ever see that, report it to FDEP), it is much more likely that you are seeing the natural aftereffects of iron-oxidizing bacteria. To determine the difference between iron bacteria and actual oil, one simple test is to touch the water and its oily film with a stick. If the sheen fractures into small pieces, it’s iron bacteria. If it oozes back to an intact slick (and smells like petroleum), it could very well be oil.