Panhandle Terrapin Project 2023 Report

Panhandle Terrapin Project 2023 Report

Diamondback terrapins are the only resident turtle within brackish water and estuarine systems.  Their range extends from Massachusetts to Texas but, prior to 2005, their existence in the Florida panhandle was undocumented.  The Panhandle Terrapin Project was developed to first determine whether terrapins exist in the panhandle (Phase I) and, if so, what is their status (Phase II and III). 

Mississippi Diamondback Terrapin (photo: Molly O’Connor)

The project began at the Marine Science Academy at Washington High School (in Pensacola) in 2005.  Between 2005 and 2010 the team was able to verify at least one record in each of the panhandle counties.  For Phase II we used what we called the “Mann Method” to determine the relative abundance of terrapins in each area.  To do this we needed to conduct assessments of nesting activity in each county.  In 2012 the project moved from Washington High School to Florida Sea Grant.  At that time, we developed a citizen science program to conduct Phase II of this project.  Effort first focused on Escambia and Santa Rosa counties, but in recent years has included Okaloosa County.  Florida Sea Grant now partners with the U.S. Geological Survey (based out of Gulf County) to assist with Phase II and lead Phase III, which is estimating populations using mark-recapture methods, as well as satellite tagging to better understand movements and habitat use.  The focus of Phase III has been Gulf County, but tagging has occurred in Okaloosa and Escambia counties. 

Over the years we have trained 271 volunteers who have conducted thousands of hours of nesting surveys and helped obtain a better picture of the status of diamondback terrapins in the Florida panhandle.  Here are the 2023 project results. 

Results from 2023

We trained 67 volunteers; 35 (52%) of which participated in at least one nesting survey.

The volunteers conducted 196 surveys logging 212 hours. 

During those surveys terrapins (or terrapin sign) were encountered 43 times; a Frequency of Encounter (FOE) of 22%.

Three terrapins were tagged.  Two from Okaloosa and one from Escambia.  All but two of the nine primary survey beaches saw nesting activity (78%).  One new nesting beach was discovered. 

Escambia County

Two nesting beaches.  47 surveys. 7 encounters (FOE = 15%).

The Mann Method assumes the sex ratio is 1:1 (male: female) but recent studies suggest the ratio may be as high as 5:1 (male: female).  Based on these two rations the number of terrapins estimated to be using these beaches ranged from 4-36. 

One terrapin (“Dollie”) was tagged.  Fire ants and torpedo grass were reported on some beaches. 

Santa Rosa County

Three nesting beaches.  68 Surveys. 14 encounters (FOE = 21%).

The number of terrapins estimated to be using these beaches ranged from 6-30.

No terrapins were captured, though one was seen nesting.  No invasive species were reported from the nesting beaches. 

Okaloosa County

Four nesting beaches. 67 surveys.  21 encounters (FOE = 31%). 

The number of terrapins estimated to be using these beaches ranged from 2-66.

Two terrapins were tagged (“Kennedy” and “Molly”).  Phragmites were reported from all beaches. 

Walton County

Walton county currently does not have a volunteer coordinator and surveys are not occurring at this time.  We are working with an individual who may take the lead on this. 

Bay County

This team is just beginning and currently there are no primary beaches.  The team focused on five beaches encountering terrapin nesting activity on one of them.  They conducted a total of 14 surveys encountering terrapin tracks on 1 of those (FOE = 7%).  The estimated number of terrapins using this beach ranged from 4-12. 

Baldwin County Alabama

Due to the proximity of terrapin habitat and nesting beaches at the Alabama/Florida line, and the possibility of terrapins using habitat in both states, a team was developed in Baldwin County Alabama this year.  The team began conducting Phase I surveys and encountered one deceased terrapin.  No nesting beaches have been identified at this time. 

Summary

The results of this year’s surveys suggest that, based on the number of nesting beaches we know of, there are anywhere from 2-66 terrapins utilizing them.  Again, two of the primary beaches did not have nesting activity this year.  USGS tagging studies will provide better population estimates and a better understanding of how these animals are utilizing these habitats.  The current population estimate for Gulf County is a little over 1000 individuals and most are showing relatively small range of habitat utilization, although two individuals in the western panhandle moved from one county to the neighboring one. 

Training for volunteers occurs in March of each year.  If you are interested in participating, contact Rick O’Connor – roc1@ufl.edu.

Meet the Chicken Turtle

Meet the Chicken Turtle

I recently wrote an article introducing some to a panhandle turtle that is not as well-known as most – the map turtles.  This week I am going to write about another lesser-known species – the chicken turtle. 

Some may say “is there a turtle REALLY called the chicken turtle?”  and “if so, why is it called that?”. 

The long neck and oval shell of the Florida Chicken Turtle. This one is missing a rear leg, probably attacked by a raccoon. Photo: Molly O’Connor

The answer is yes… there is a turtle called a chicken turtle (Deirochelys reticularia).  It is a member of the family Emydidae, which is the family where you find the different pond, river, and lake turtles, as well as the terrapins and box turtles.  The name chicken may refer to the unusually long neck this turtle has, but more than likely it comes from an early description of the species in the 1800s that stated it “taste better than the cooters – more like chicken.” 

The reason some are not aware of this animal is because of their habitat selection, behavior, and low population densities.  Though they are aquatic turtles, they are very selective of which waterbodies they inhabit and may spend months out of the water in upland forested areas. 

Chicken turtles seem to prefer quiet shallow waterways where the water is clear, or at least tannic, they dislike turbid/muddy systems.  They avoid rivers, creeks, streams, and many lakes.  Most of the waterways they inhabit are ephemeral, meaning they dry up during part of the year.  During these dry times they, again, seek upland habitats and have been found as far as a 150 meters (510 feet) from any water source.  The females appear to avoid their landward movements during the peak of summer.  However, males are opposite – moving upland during summer and not as common during the winter months.  These overland treks by the females seem to be associated with nesting activity.  Where the upland movement of males seem to focus on finding new waterways after the ones they were in have become dry. 

Their distribution extends across the southern coastal plains.  From Virigina, throughout the deep south, west to Texas, and north to Arkansas.  They are found throughout the state of Florida.  There are three recognized subspecies –

The Eastern Chicken Turtle (Deirochelys reticularia reticularia)– is found from southern Virginia, coastal Carolinas, southern Georgia, Alabama, Mississippi, and the Florida panhandle.  In addition to the long neck, the carapace is sort of “domed” shaped.  Terms like “helmet” and “pear” shaped have been used as well.  The coloration is dark gray to olive green with a distinct yellow line pattern that resembles a cast net covering the carapace.  The plastron is solid yellow to a yellow-orange color.  The underside of the bridge (portion of the shell connecting the carapace to the plastron) usually has two dark blotches.  This subspecies often has dark spots along with the dark bars on the underside of the bridge. 

The Florida Chicken Turtle (D. r. chrysea) – is found in the Florida peninsula.  The dark markings on the underside of the bridge are absent in this subspecies. 

The Western Chick Turtle (D. r. miaria) – is found west of the Mississippi River in Louisiana, Texas, and Arkansas.  Its plastron is not solid yellow, but rather has dark markings within the seams of the plastron scutes. 

Chicken turtles are of average size, with carapace lengths near nine inches, and (as with many turtles) females are larger than males.  The young and males feed on the larva of such things as dragonflies and damselflies, as well as other aquatic bugs.  Crayfish seem to be a particular favorite, especially with the larger females. 

Mating occurs underwater.  Nesting begins in summer and continues through fall and winter.  Two to 19 eggs are deposited but the average is around 10/clutch, and she will lay more than one clutch each year.      

Threats to their populations include being hit by cars while crossing highways.  Their overland treks enhance this problem.  Other threats include predation by raccoons and alligator snapping turtles, the pet trade, and it was once a food item – “taste like chicken”.  With low densities of chicken turtles, this may be the result of overharvesting years ago.  Potential threats include habitat loss and invasive species are very likely. 

Statewide turtle surveys suggest that chicken turtles are found but their abundance/density is low compared to other species.  It is exciting for folks exploring both our ephemeral wetlands and upland areas to find it.  Hopefully, one day, you will encounter one as well. 

Meet the Map Turtles

Meet the Map Turtles

Florida has a great variety of turtles.  Actually, the species richness here is higher than any other state – though Alabama may argue.  Many are familiar to us.  If we have not seen them, we have at least heard of them.  But that may not be the case with map turtles. 

Map turtles are in the same family as many of the common ponds turtles but are in the genus Graptemys.  The patterns on their shells and skin are beautiful and they have raised scutes along the midline of their shells giving them a “sawback” or “dinosaur” look.  They are associated with alluvial rivers due to their diet of shellfish, which cannot be found in the low pH waters of tannic rivers.  To our west, in Alabama and Mississippi, there are several species of them.  And as you move up into the Mississippi valley and into the Midwest, there are even more.  But here in Florida there are only two.  Let’s meet them. 

The Barbour’s Map Turtle (Graptemys barbouri) is associated with the Apalachicola River system.  First discovered in the Chipola River, it has now been found in the Chattahoochee, Flint, and Apalachicola River systems, as well as the Choctawhatchee and Pea Rivers.  It may have been introduced to the Ochlockonee and Wacissa.

Barbour’s Map Turtle. Photo: Rome Etheridge

Female map turtles are much larger than the males, and the female Barbour’s Map is the largest of all map turtles – with a carapace length of 33cm (13 in.).  She has a very broad head (8cm, 3in. wide) to crush the shells of her favorite prey – snails.  The males only reach 13cm (5in.) carapace length and their heads are much narrower.  Barbour’s Maps prefer flowing rivers with limestone outcrops.  These outcrops support the snails they like to eat.  That said, they have been found in high numbers within the silty channels of these rivers. 

Females take many years to mature, possibly as long as 14.  Males mature in 3-4 years.  Breeding begins in the spring and nesting begins in late April but will continue into August.  Like most turtles, they seek out sandy beaches where they will lay multiple clutches of 7-10 eggs over the span of the nesting season. 

Fallen trees (snags) are important basking areas and map turtles use them frequently.  During the cooler months, and low water periods along the river, they will hide in deep pockets within the limestone rock.  Their home range along the rivers are between 250 and 1500 meters (74 and 441 feet), with males having a larger range.  Other than nesting, activity on land is not common. 

Their populations seem to be stable, though they are protected by FWC and possession without a permit is illegal.  Harvest does still happen, and the activity known as “plinking” (shooting them off their basking logs) occurs as well.  Nest depredation, and the killing of adults, by raccoons is common.  Crows are another threat. 

The Escambia Map Turtle (Graptemys ernsti) is associated with the Escambia River.  With the Florida section of this river only being 54 miles long, it has the most restricted range of any turtle in the state.  That said, along these stretches of river, it is one of the more abundant turtles.  Paddling a lower section of the Escambia I counted an average of 11 individuals per basking log.  It has been found in the Yellow and Shoal Rivers as well.  But due to the lower pH and lack of mollusks, they are not found in the nearby Blackwater and Perdido Rivers. 

The Escambia Map Turtle is only found in the Escambia, Yellow, and Shoal Rivers. Photo: Molly O’Connor

Like all map turtles, it has beautiful markings on the shell and head.  Like all map turtles, it has the characteristic “sawback” appearance down the middle of the carapace.  Like all map turtles, the females are much larger than the males.  However, the female of this species is not as large as the female Barbour’s Map – with a carapace length of 28cm (11in.). 

The males of this species feed on a variety of insects but the females stay with the characteristic molluscan diet.  The introduced Asiatic clam (Corbicula fluminea) is a particular favorite.  Breeding occurs in the spring and nesting area are sandbars found along the river’s edge.  These turtles are having problems with ATVs using such nesting areas, the removal of snag basking trees, and plinking.  There are also concerns with the building of dams along the Alabama portion of the river.  They are protected by FWC, and you cannot possess them without a permit.   

With only two species of map turtles in the entire state, and both only found in the panhandle, these are unique species to the rich variety of turtles found here.

Terrapin Season is Upon Us

Terrapin Season is Upon Us

Since 2007 Florida Sea Grant has worked with partners, and trained volunteers, to assess the status of the diamondback terrapin in the Florida panhandle.  This small emydid turtle is the only one that lives in brackish water and prefers salt marshes.  Very little is known about this turtle in this part of the country, and the Panhandle Terrapin Project has the goal of changing that. 

Female diamondback terrapin. Photo: Rick O’Connor

Terrapins have strong site fidelity, meaning they do not roam much, and spend most of their day basking in the sun and feeding on shellfish – marsh snails being a particular favorite.  Like many species of turtle, they breed in the spring.  Gravid females leave the marsh seeking high dry sandy beaches along the shores of the estuary to lay their eggs.  Unlike sea turtles, she prefers to do this on sunny days – the sunnier the better.  She typically lays between 7-10 eggs, and they hatch in about two months.  The hatchlings spend their early months on shore, hiding under wrack and debris feeding on small invertebrates before heading to the marsh where the cycle begins again. 

The project has three objectives each year.  One, to survey known (primary) nesting beaches for nesting activity.  The number of nests, tracks, and depredated nests can be used to calculate a relative abundance of these animals using those beaches.  Two, survey potential (secondary) nesting beaches for any presence of nesting activity.  Three, tag terrapins using the old notch method, PIT tags, and a small few with satellite tags.  This will help us track terrapin movement and better understand how they use the habitat. 

Since the project began, we have been able to verify at least one terrapin in each of the seven panhandle counties being surveyed and have identified nesting beaches in four of those.  Relative abundance is rather low when compared to other regions within their range, but those beaches remain active. 

The nesting season historically begins in late April and 2023 has been busy early.  Seven hatchlings that overwintered in their 2022 nests emerged and were found by volunteers, and others.  Two depredated nests were located, and one nesting female was captured and tagged.  The volunteers will continue to survey the rest of the spring and much of the summer.  Reports of these turtles are important in our assessment.  If you believe you have seen a terrapin, contact Rick O’Connor – roc1@ufl.edu – (850) 475-5230 ext.1111.  and let us know where. 

Female terrapin fixed with a satellite tag for tracking. Photo: Rick O’Connor
Small terrapin hatchling released on Santa Rosa Island. Photo: Rick O’Connor
FWC’s New Ruling for Recreational Crab Traps

FWC’s New Ruling for Recreational Crab Traps

At their December 2021 meeting, the Florida Fish and Wildlife Conservation Commission (FWC) passed two rulings designed to enhance the conservation of diamondback terrapins, a small estuarine turtle. 

  1. As of March 1, 2022, no one can possess a diamondback terrapin without an FWC permit. 
  2. As of March 1, 2023, all recreational crab traps in Florida must have a 6×2” funnel opening, or a By-Catch Reduction Device to make the funnel opening 6×2”. 

This article discusses the recreational crab trap ruling.  We will discuss the What, Why, How, When, and Where of this ruling. 

What…

The new ruling calls for all recreational crab traps in Florida waters to have a 6×2 inch funnel opening, or a By-Catch Reduction Device that creates a funnel opening of 6×2 inches, by March 1, 2023. 

Why…

Diamondback terrapins are a species of special concern in the state.  The diversity of sub-species is high, highest of any other state, but abundance is low.  Research has shown that threats to terrapin populations include, loss of habitat and nesting beaches, nest depredation by wildlife, removal for the pet trade, and incidental drowning in crab traps.  To help conserve this animal in our state the two rulings mentioned above were passed in 2021. 

How…

By-catch Reduction Devices (BRDs) measuring 6×2” can be obtained from your local Florida Sea Grant Extension Agent.  If you do not have a Sea Grant Extension Agent in your county extension office, they will direct you to the closest one.  You will need to place the BRD on each of the funnel openings of your crab trap using zip ties.  Your local Sea Grant Agent can show how to do this. 

When…

All recreational crab traps used in Florida waters should have the 6×2 inch (or BRD in place) by March 1, 2023. 

Where…

This is for Florida waters only. 

If you have further questions concerning this ruling, please contact your local Sea Grant Agent at your local county extension office. 

This orange plastic rectangle is a Bycatch Reduction Device (BRD) used to keep terrapins out of crab traps – but not crabs. Photo: Rick O’Connor
Assessing the Status of Diamondback Terrapins in the Florida Panhandle 2022 Update

Assessing the Status of Diamondback Terrapins in the Florida Panhandle 2022 Update

Introduction

The diamondback terrapin (Malaclemys terrapin) is the only resident brackish water turtle in the United States.  Ranging from Massachusetts to Texas.  This estuarine turtle spends much of its time in coastal wetlands such as marshes and mangroves but have been found in seagrasses.  They feed primarily on bivalves, have strong site fidelity, and live to be 20-25 years in the wild.  Studies on their basic biology and ecology have been published throughout their range with the exception of the Florida panhandle. 

In 2005 the Marine Science Academy at Washington High School (MSA) was asked to survey coastal estuaries within the Florida panhandle to determine whether diamondback terrapins (Malaclemys terrapin) existed there. 

Methods – Presence/Absence

To determine presence/absence MSA identified boat ramps near suitable terrapin habitat.  “Wanted” signs were placed at these ramps with our contact information and beach walk surveys were conducted seeking terrapins or terrapin sign.  Since the best time to conduct beach surveys is May and June (not suitable for high school), that part of the project moved to program director and his family. 

Surveys were conducted and terrapins were found in each of the six counties between the Alabama state line and the Apalachicola River. 

Methods – Relative Abundance

The next question was to assess their relative abundance.  To do this the team followed a protocol used by Tom Mann with the Mississippi Department of Natural Resources we call the “Mann-Method”.  There are recognized assumptions with this method.    

  1. Every sexually mature female within the population nests each season.
  2. Each female will lay more than one clutch per season but never more than one in a 16-day period. 
  3. You know where all nesting beaches are located.
  4. The sex ratio to males is 1:1. 

Going on these assumptions, every track, nest, or depredated nest on the nesting beach within a 16-day window is equivalent to one female.  If the sex ratio is 1:1, then each female is equivalent to one male, and you have a relative abundance of the population.  That said, there are publications suggesting the female: male ratio could be 1:3 or even 1:5 in the Florida panhandle.  We would report the relative abundance as 1:1 – 1:5 for each nesting site.

Another method of estimating relative abundance is conducting a 30-minute head count.  From a fixed location, or drifting in a kayak across the lagoon, every head spotted in a 30-minute period is logged.  The assumption here is that if the average number of heads / 30-minutes increase or decreases over time, the relative abundance within the population is increasing or decreasing as well. 

Trained volunteers conducted these surveys at least once a week at each nesting beach from April 1 to June 30 each year. 

2022 Data Update

  • 47 volunteers were trained in March of 2022; 21 (45%) participated in surveys. 
  • 173 surveys were conducted; 346 hours were logged.
  • Terrapins (or terrapin sign) were encountered during 43 of the surveys – Frequency of Encounters = 25% of the surveys. 
  • Surveys occurred in Escambia, Santa Rosa, Okaloosa, and Bay counties.  Encounters occurred in all counties except Bay. 

Beach Surveys – 2022

County# of Surveys# of EncountersFrequency of Encounters
Escambia294.14
Santa Rosa5815.26
Okaloosa4325.58
Bay430.00
TOTAL17343.25

Head Count Surveys – 2022

County# of SurveysRange of Heads/30-minMean of Heads/30 min
Escambia0NDND
Santa Rosa20-4924
Okaloosa170-3211
Bay0NDND

Estimated Relative Abundance Using the Mann-Method

CountyNesting Beach SurveyedRatio 1:1Ratio 1:3Ratio 1:5Relative Abundance for the County
Escambia148124-12 terrapins
Santa Rosa11224362-48 terrapins
 2246 
 3163248 
Okaloosa12448722-72 terrapins
 24812 
 3246 
Bay1NDNDNDND
 2NDNDND 
YearCountyRelative Abundance
2008Santa Rosa14-35
2009Santa Rosa14-35
2010Santa Rosa32-80
2011Santa Rosa10-50
2015Santa Rosa12-30
2018Santa Rosa16-40
2021Santa Rosa4-12
 Escambia8-24
 Okaloosa4-70
2022Santa Rosa2-48
 Escambia4-12
 Okaloosa2-72

Terrapins Captured – tagged – and tissue samples collected

County# of Terrapins Captured/Tagged/Tissue Collected
Escambia1
Santa Rosa2
Okaloosa2
Bay0
TOTAL5

Results

At the beginning of this project Objective 1 was to determine whether diamondback terrapins existed in the Florida panhandle.  That objective has been met – they do, we have at least one verified record in all six counties between the Alabama state line and the Apalachicola River. 

Objective 2 is to determine the relative abundance within these counties.  The first step in addressing this objective is to determine where terrapins are nesting in each.  Nesting beaches have been identified in Escambia, Santa Rosa, and Okaloosa counties – but we are not sure whether ALL of the nesting beaches in those counties have been identified. 

Known nesting beaches in Escambia County have changed over time.  Two of the three nesting locations have become inactive in recent years and other potential beaches have not been adequately surveyed to determine whether they are being used or not.  Based on one active nesting beach, the relative abundance of terrapins in Escambia County is low.  Estimations using the Mann-Method suggest that there are between 2-24 terrapins present. 

There are numerous potential nesting locations in Santa Rosa County but only a few have been adequately surveyed.  Currently there two active nesting beaches being surveyed and the relative abundance at these has run between 30-80 animals at one location, 6-36 at the other.  Going with this, there are between 6-80 terrapins present. 

Okaloosa has only recently been surveyed.  There are currently three active nesting beaches being surveyed and most of the nesting is occurring at one of those.  The location of these beaches suggests that these are all animals of the same group or clad and part of the same population.  Based on the results there are between 2-72 terrapins present. 

Surveys are JUST getting underway in Bay County and no surveys have been conducted in Walton. 

These data suggest that the relative abundance in each county is less than 100 and small when compared to other locations within their range. 

Discussion

The results are only as good as the data being used.  The volunteers participating in this project are doing an excellent job, but the frequency of nesting beach visits and head counts surveys are lower than needed to make accurate assessments.  Several of the nesting beaches are in difficult places for volunteers to reach frequently and thus not surveyed as frequently as we would need.  More volunteer participation could help this.  Keep in mind that the Mann-Method also focuses on nesting females and males, immature females are not accounted for so the population would be slightly larger than estimated using this method.  That said, we do believe that the populations in this part of their range are most likely smaller than other parts of their range.  These surveys will continue.  Questions or comments can be directed to Rick O’Connor, Florida Sea Grant, University of Florida IFAS Extension, roc1@ufl.edu.