Bot Rot: Sweet Viburnum’s Achilles Heel

Bot Rot: Sweet Viburnum’s Achilles Heel

Sweet Viburnum (Viburnum odoratissimum) is thought of as being an ironclad landscape shrub, generally a rapid, healthy grower free of insects and disease.  However, this spring, many Sweet Viburnum specimens across the Panhandle have experienced varying degrees of dieback, from individual shoots to entire sections of shrubs, caused by the fungal pathogen Botryosphaeria – commonly known as Bot Rot.

Typical symptom of Bot Rot on Sweet Viburnum. Photo courtesy of Daniel Leonard.

Bot Rot almost always appears after some kind of major stress event that impacts susceptible plants – drought, pruning wounds, nutritional deficiencies, or another environmental stress.  We haven’t been afflicted lately with any serious drought conditions and the disease occurrences are too widespread to have been a result of isolated pruning or poor plant nutrition.  However, the Panhandle did experience a major environmental event around Christmas 2022 that was plenty stressful for landscape plants, a weeklong Arctic blast of extreme cold.  This abrupt hard freeze event in an otherwise mild winter is my best guess for what brought about the increased incidence of Botryosphaeria we have experienced this spring.

The Botryosphaeria fungus enters plants via wounds – in this case one probably caused by cold – and begins destroying the plant’s vascular system in the area.  As the pathogen progresses, it eventually causes sunken cankers to appear, girdles the affected branch, and cuts off “circulation” in that stem.  The first symptom of Bot Rot that gardeners notice is shoots rapidly wilting and exhibiting a blighted appearance, with brown, dead leaves holding onto affected limbs.  Unfortunately, dieback isn’t always limited to individual shoots and can spread back into plants to eventually encompass whole branches.  Entire plants dying from Bot Rot infection is not uncommon.   

While there aren’t any fungicides that are effective in controlling or preventing Bot Rot, gardeners can arrest its spread by pruning out infected branches.  To completely rid the plant of the fungus, make sure to prune 4” or so below the last infected plant tissue (symptomatic tissue will appear dark and discolored; healthy tissue will appear light and greenish).  After pruning each affected plant, it is important to sanitize pruning equipment with either a 10% bleach solution or 70%+ isopropyl alcohol to prevent spreading pathogens to other healthy plants!  Plants that have been irreparably disfigured by Bot Rot or outright killed may be pulled and discarded offsite. 

While this year’s Bot Rot infestation has been extremely frustrating and similar future freeze events can’t be ruled out, gardeners should not give up on Sweet Viburnum, an excellent specimen or screening shrub.  Keeping plants healthy with proper pruning, good fertility, and adequate irrigation is the best defense to ward off future infection when we experience harsh environmental conditions!  For more information on Bot Rot, Sweet Viburnum, or any other horticultural topic, contact your local UF/IFAS County Extension Office!  Happy Gardening.

The Virus was First Discovered in Plants

The Virus was First Discovered in Plants

Did you know that the first virus discovered was in plants, not in humans? As early as 1857, tobacco farmers in the Netherlands recognized a new disease of tobacco. It wasn’t called a virus at the time as the causal agent was unknown. In 1886, Adolph Mayer, a German agricultural chemist, determined that the “tobacco mosaic” disease could be transmitted to healthy plants by rubbing them with infected leaf sap.

Tomato leaf with tobacco mosaic virus

Tomato leaf with tobacco mosaic virus. Photo credit: UF Plant Pathology Department

When taking a plant pathology course in college, it amazed me that viral organisms were ever discovered. They are extremely small. So small that it was not until the development of the electron microscope in the late 1930s that scientists were able to see the structure of the tobacco mosaic virus. Viruses are 20 – 250 nanometers in diameter, about 100 times smaller than bacteria.

The discovery of fungi and bacteria came before the discovery of viruses as the cause for plant diseases. In most cases, we have many chemical options for control of fungal and bacterial diseases in plants. But there are few to no chemical options to control viral organisms in plants. By the nature of how a virus operates in a plant cell, chemical control results in death of the host cell, surrounding tissue and possibly the whole plant.

Control of viruses in plants involves eliminating the source of the virus such as nearby weeds, control of insect vectors that transmit the disease such as aphids and thrips and use of resistant plants.

Historically, plant diseases have caused major impacts on humans. In 1845, the Potato Famine in Ireland was caused by the fungus Phytophthora infestans. This disease was responsible for the death of more than 1 million people as it devastated the production of the potato as a major food source at the time and is credited for the beginning of plant pathology as a science. Cryphonectria parasitica, an introduced fungus, essentially wiped out the American chestnut as the dominant tree in the eastern U.S. forests during the early 1900s. The excellent wood was used to build homes and the nutritious nuts were eaten by humans and fed to livestock. Currently, UF/IFAS plant pathologists are working to solve Citrus Greening, a bacterial disease that has severely damaged the citrus industry and has the potential to completely eliminate citrus production in Florida.

If it were not for the land-grant university system, of which Extension Agents are a part, there would be few to no plant pathologists in the United States. It is these land-grant universities, like the University of Florida and others, that provide plant pathology courses, training, research, development and ultimately that graduate with degrees those who go on to careers in the field of plant pathology, discovering new diseases and developing controls for these diseases.

I Ain’t Afraid of No Slime Mold

I Ain’t Afraid of No Slime Mold

The plasmodium of Fuligo septica slime mold consuming bacteria and fungi inside the office worm bin. Photo by Molly Jameson.

Just when we thought we had our Leon County Extension vermicompost bins all figured out for recycling office food waste with the aid of worms…aliens invaded. I instinctively started looking all over for my “Ghostbusters” proton gun and backpack – but when they didn’t turn up, I decided to retreat and do a little research.

Fuligo septica moves as a mass of protoplasm about a millimeter an hour. Photo by Molly Jameson.

A mesmerizing bright yellow substance had taken over the entire top of the office worm bin, and when the lid was lifted, the yellow ooze was streaming down the inside of the lid and into the bin. Long, squiggly zig zags seemed to be engulfing nearly all the contents within the worm bin.

Unlike Ray Stantz’s reaction when he first meets Slimer devouring the room-service leftovers in the hotel hallway in the original “Ghostbusters,” we were all a little taken aback by our surprise intruder.

“Oh my! Will it kill our worms? Is it toxic? Where did it come from?”

Turns out our slimy yellow visitor was Fuligo septica; a species otherwise known as – and here’s hoping you’re not eating – dog vomit slime mold. A fitting name, indeed. To our amazement, Fuligo septica is not actually a mold (aka: fungus). Nor is it a plant, animal, or bacteria. It is actually a plastid, in the kingdom Protista and class Myxogastria, whose wind- or insect-spread spores converge and divide into a singular giant cell containing millions of nuclei, known as a plasmodium. These individuals come together to form a larger plasmodium and move as a mass of protoplasm, about a millimeter per hour, to feed on microorganisms living in decaying plant material.

I know what you’re thinking…this smattering of scientific terms has you right back in high school science class, and you’re feeling a bit woozy. But really – who needs science fiction movies like “Ghostbusters” when we have scientifically-explained neon slime molds all around us?

After a few days, Fuligo septica transforms into a pillow-like fruiting body in preparation for spore dispersal. Photo by Molly Jameson.

Besides the potential of Fuligo septica spores to be an allergen to those who are susceptible, this surprisingly common slime mold is not toxic to people, plants, or animals. It can be found on rotting bark and forest floors in nature – or on wood mulch in urban areas – normally when conditions are moist. The microorganisms the slime mold consumes are mainly bacteria and fungi, which are also very much present in the decaying food scraps and coffee grounds within a worm bin. And although Fuligo septica is harmless to people, it needs to watch out for us, as it is actually edible! Appropriately, another name for dog vomit slime mold is scrambled egg slime, as indigenous people in some areas of Mexico have collected the mold and scrambled it like eggs. Breakfast anyone?

Although real-life slime molds give Slimer a run for his money, the plasmodium blob of Fuligo septica will not stay its striking yellow amorphous shape for long. After a few days, it transforms into a pillow-like aethalium – a spore-bearing fruiting body like that of a mushroom – then degrades, darkens to a pinkish tan color, and finally releases its spores to start anew when conditions are right.

As the slime mold degrades, it darkens to a pinkish tan color, and releases its spores into the air. Photo by Molly Jameson.

Slime molds have stood the test of time, as analyses of their DNA has revealed they’ve been on Earth approximately a billion years! For reference, that’s hundreds of millions of years before plants or animals. And it’s a good thing Fuligo septica is here, because some of its characteristics has shown a lot of potential to be helpful, including as antibiotics, an ability to fight cancer cells, as antimicrobials, and environmental site remediation due to its ability to hyper-accumulate toxic heavy metals, such as zinc, and convert them to inactive forms. Scientists have discovered it’s the same yellow pigment that gives Fuligo septica its striking color that also forms a chelate with the heavy metals.

So, if you’re walking through a forest, down a path of mulch, or tending to your worm bin and come across this eye-catching, bright-yellow blobby creature, let this plasmodium do its thing. Probably better to scramble some actual eggs, lest your guests be squeamish.