Hurricane Michael Devastates Regional Seafood Industry

Hurricane Michael Devastates Regional Seafood Industry

Floating mesh oyster grow bag hanging in a tree

Oyster grow bag left hanging by Michael’s storm surge.
Erik Lovestrand, UF/IFAS Franklin County Extension

It may be a long time before the memories of Hurricane Michael begin to fade in the mind’s eye for residents of the Florida Panhandle. A record-breaking tropical cyclone in many respects, Michael caught a lot of people in the region off guard as it continued to gain strength on its rapid path through the Northern Gulf of Mexico. When many people went to bed the night before landfall, they had no idea what terrifying news would greet them upon hearing that a still-strengthening category 4 hurricane was about to rumble ashore.

It was not long after the wind slackened that folks began looking around and realizing the devastation left behind. Cotton crops in the path of the storm in North Florida and South Georgia suffered near 100% losses. Peanut crops were also severely impacted just at the time that harvest was beginning. The estimated damage to timber harvests alone were coming in around 1.3 billion dollars for Florida as virtually entire forests had been leveled. Even more damage was realized near the coastline where storm surge across the region ranged from 8 to 14 feet above normal water levels; smashing or flooding structures near the coast and carving new inlets across St. Joseph Peninsula near Cape San Blas.

Another industry that took a hard hit in much of the area was the seafood industry; everything from the producers to the dealers, processors, retail markets, restaurants, fueling and ice house facilities that service fishing vessels. Governor Scott requested a fisheries disaster declaration from the Federal Government and on November 1 the Secretary of the Department of Commerce granted the request. This determination provides an opportunity for Congress to appropriate fishery disaster assistance for the new fiscal year, which began in October. To further facilitate recovery efforts in Florida and beyond, the Department of Commerce can look to the Economic Development Administration, which spearheads the Federal government’s efforts to deliver economic assistance and support long-term growth after natural disasters.

Oyster growers in the region who had equipment and a crop of shellfish in the water took some losses as well. For those who were able to scramble to their leases before the storm and sink their floating baskets or cages to the bay bottoms, losses of gear were minimal as storm waves above the submerged gear had less impact. Gear that was unable to be submerged was more prone to break loose and drift away. However, even the growers that sunk gear experienced some significant oyster mortality due to sediments from churned up water smothering the shellfish in a layer of mud. Shellfish leases in Alligator Harbor were dealt another blow by an incredible field of debris that was washed off Alligator Point and blown through the lease area. Everything from boats to large sections of docks, structural walls, refrigerators and freezers was in the mix. These items were caught up in oyster long-lines and broke some while pulling up anchor poles on others, leaving quite a mess for growers to untangle.

Marinas, docks and vessels were also not immune to Hurricane Michael’s wrath in Gulf and Bay Counties. Government agencies estimate the number of damaged vessels in both Gulf and Bay counties to exceed 400. It will take some time for charter boat and commercial fishing operations to rebound. Scallop restoration projects in both St. Joseph Bay and St. Andrews Bay have suffered setbacks, as well. The hurricane has not only devastated coastal Gulf county economically and ecologically, but also geographically. There are two sizable inlets that have now been carved into the St. Joseph Peninsula. T.H. Stone State Park is closed until further notice.

Overall, the impacts from this storm will take a long time to recover from for many segments of our regional economy. Lessons learned by industries as well as individuals should improve our chances to reduce the loss of life and property in the future. The name of the game is “resiliency,” both in the spirit of the people who call this place home and in the way we learn to better adapt to what Mother Nature throws at us. Hang in there. Day by day.

Nature Notes – The Blue Crab

Nature Notes – The Blue Crab

Most kids who grew up on the Gulf Coast grew up catching blue crabs. These animals are common along our shorelines, relatively easy to catch, and adventurous because they may bite you.  I caught my first one in 1965 and we proudly displayed the boiled shell over the kitchen bar for many years.  This is also a popular seafood target with an estimated commercial landing value of $56,950 in the Pensacola Bay area in 2017.

Blue crabs are one of the few crabs with swimming appendages.
Photo: Molly O’Connor

But who is this crab that we enjoy so much? What do we know about it?

 

As you probably already know, it is one of an estimated 30,000 species of arthropods we call crustaceans.  Crustaceans differ from insects and arachnids in that they have five pairs of legs and two sets of antenna.  Insects typically have a head, thorax, and abdomen – however, in the crustaceans the head and thorax are fused into what is called a cephlathorax and covered with a section of the shell called the carapace.  Like all arthropods, their body are completely covered in a chitinous shell that serves as their exoskeleton.  This exoskeleton must be periodically shed (molting) so they can continue to grow.  Crustaceans tend to molt about 10-11 times each year and typically in the summer months.  To molt, crustaceans will remove some of the salts and minerals from the shell into their tissue, this weakens the shell enough to separate it.  The crack is usually between the cephlathorax and abdomen.  When they emerge, they are completely soft and about 30% larger than before – it is amazing to see this large crab emerge from the small shell it once lived in.  Because of the softness of the body after molting, this is usually done under the cover of darkness for protection.  The salts and minerals it removed during pre-molting are now used to harden the new shell – which can take a couple of days.  It is at this stage we call them “soft shells”.

 

The crustaceans include many different kinds of arthropods – most notably are the crabs, shrimps, and lobsters. There are over 4500 species of crabs and they differ from shrimps and lobsters in the fact their abdomen flexes beneath their body – you do not see the “tail” you see in a lobster or shrimp – but its there.  Crabs can also move very well laterally, which their cousins are not so good.  Blue crabs differ from other crabs in that their last pair of legs are modified as paddles and the animal can swim.  They can swim forwards, backwards, and laterally – and they are often seen swimming at the surface.  There are other crabs who have these swimming paddles and they are all called protunid crabs.

 

Blue crabs perceive their world through their eyes, antenna, and sensory cells on their body. They are very good at burying in the sand – eyes and antenna exposed – and sensory cells all working – seeking prey and avoiding predators.  Their eyes differ from ours in that they have numerous lenses, compared to our single one, and are called compound eyes.  Each lens does not provide them with an image of you or me however.  Rather each lenses provides them with a single pixel of light.  It is much like the image you see on television when they are trying to block out a brand name, or someone’s face.  The more pixels (lenses) you have, the clearer the image.  Those this type of eye does not give as clear an image as ours; it is very good at detecting motion and has served the arthropods very well over the years.

 

For blue crabs, food can be just about anything. They are active hunters – usually using the ambush method of capture (buried in the sand), but are also known scavengers – eating any bits of food they can find.  Those enjoy crabbing know this – you can put just about anything as bait in a crab trap and it works.  They have numerous predators including fish, birds, mammals, and sea turtles.

Male and female blue crabs.
Photo:

Blue crabs can be found in a variety of salinities (euryhaline). Males are typically found in the lower salinities of the upper bay.  Females join them during mating season – which is in late spring and summer.  Males cradle the females beneath his legs for several days waiting for the right location and moment to breed.  Fishermen refer to them as “doublers” during this time.  The females will molt and the male will then deposit his sperm into a sac called a spermatophore – which he then deposits to the female.  She will then migrate to the more saline lower portions of the lower bay, while he remains and seeks another female.  This may be the only spermatophore she receives her entire life – which can be up to five years, though most do not live beyond three years.  She will use sperm from this spermatophore over that time to fertilize eggs.

 

The eggs develop in a sponge mass that develops beneath her abdomen. This egg mass is orange when in early development and becomes a darker brown with age as the larvae consume the yolk.  There can be between 750,000 and 2,000,000 developing eggs within this mass.  The females are called gravid at this stage and it is illegal to harvest gravid crabs in Florida.

 

The eggs hatch in about two weeks and a small microscopic mosquito looking larvae emerges – at this stage, they are called zoea.  The zoea drift into the Gulf of Mexico where they feed and molt.  Eventually they return to the estuary and become a microscopic crab with a tail – this stage is called a megalops.  The megalops will feed and molt.  The tail will eventually flex beneath and the crab becomes sexually mature.  The entire process from hatching to sexual maturity is about 12-18 months.

 

These are fascinating animals. They are very common and a large part of the coastal culture of the Florida panhandle.  Kids will have great fun catching them with a hand net, letting them swim in their beach buckets, but be sure to let them go before you head home and watch those claws – they do know how to use them.  It is a great animal.

The famous blue crab.
Photo: FWC

Recreational Blue Crab Harvest Regulations in Florida

No size limit

10 gallons whole / harvester / day

Harvesting gravid females is prohibited

Five crab traps / person – cannot be placed in navigation channels

Trap closed season in Florida panhandle – Jan 5-14 in odd years.

 

 

References

 

Barnes, R.D. 1980. Invertebrate Zoology. Saunders College Press. Philadelphia PA. pp. 1089.

 

Blue Crab. Callinectes sapidus. Chesapeake Bay Program. 2018. https://www.chesapeakebay.net/discover/field-guide/entry/blue_crab.

 

Florida Fish and Wildlife Conservation Commission. Commercial Landings in Florida. 2017-2018. http://myfwc.com/research/saltwater/fishstats/commercial-fisheries/landings-in-florida/.

 

Florida Fish and Wildlife Conservation Commission. Recreational Blue Crabbing. http://myfwc.com/fishing/saltwater/recreational/blue-crab/.

Florida’s Water Quality Woes

Florida’s Water Quality Woes

Being in the panhandle of Florida you may, or may not, have heard about the water quality issues hindering the southern part of the state. Water discharged from Lake Okeechobee is full of nutrients.  These nutrients are coming from agriculture, unmaintained septic tanks, and developed landscaping – among other things.  The discharges that head east lead to the Indian River Lagoon and other Intracoastal Waterways.  Those heading west, head towards the estuaries of Sarasota Bay and Charlotte Harbor.

 

A large bloom of blue-green algae (cyanobacteria) in south Florida waters.
Photo: NOAA

Those heading east have created large algal blooms of blue-green algae (cyanobacteria). The blooms are so thick the water has become a slime green color and, in some locations, difficult to wade.  Some of developed skin rashes from contacting this water.  These algal blooms block needed sunlight for seagrasses, slow water movement, and in the evenings – decrease needed dissolved oxygen.  When the algae die, they begin to decompose – thus lower the dissolved oxygen and triggering fish kills.  It is a mess – both environmentally and economically.

 

On the west coast, there are red tides. These naturally occurring events happen most years in southwest Florida.  They form offshore and vary in intensity from year to year.  Some years beachcombers and fishermen barely notice them, other years it is difficult for people to walk the beaches.  This year is one of the worst in recent memories.  The increase in intensity is believed to be triggered by the increase in nutrient-filled waters being discharged towards their area.

Dead fish line the beaches of Panama City during a red tide event in the past.
Photo: Randy Robinson

On both coasts, the economic impact has been huge and the quality of life for local residents has diminished. Many are pointing the finger at the federal government who, through the Army Corp of Engineers, controls flow in the lake.  Others are pointing the finger at shortsighted state government, who have not done enough to provide a reserve to discharge this water, not enforced nutrient loads being discharged by those entities mentioned above.  Either way, it is a big problem that has been coming for some time.

 

As bad as all of this is, how does this impact us here in the Florida panhandle?

 

Though we are not seeing the impacts central and south Florida are currently experiencing, we are not without our nutrient discharge issues. Most of Florida’s world-class springs are in our part of the state.  In recent years, the water within these springs have seen an increase in nutrients.  This clouds the water, changing the ecology of these systems and has already affected glass bottom boat tours at some of the classic springs.  There has also been a decline in water entering the springs due to excessive withdrawals from neighboring communities.  The increase in nutrients are generally from the same sources as those affecting south Florida.

 

Florida’s springs are world famous. They attracted native Americans and settlers; as well as tourists and locals today.
Photo: Erik Lovestrand

Though we are not seeing large algal blooms in our local estuaries, there are some problems. St. Joe Bay has experienced some algal blooms, and a red tide event, in recent years that has forced the state to shorten the scallop season there – this obviously hurts the local economy.  Due to stormwater runoff issues and septic tanks maintenance problems, health advisories are being issued due to high fecal bacteria loads in the water.  Some locations in the Pensacola area have levels high enough that advisories must be issued 30% of the time they are sampled – some as often as 40%.  Health advisories obviously keep tourists out of those waterways and hurt neighboring businesses as well as lower the quality of life for those living there.

 

Then of course, there is the Apalachicola River issue. Here, water that normally flows from Georgia into the river, and eventually to the bay, has been held back for water needs in Georgia.  This has changed flow and salinity within the bay, which has altered the ecology of the system, and has negatively impacted one of the more successful seafood industries in the state.  The entire community of Apalachicola has felt the impact from the decision to hold the water back.  Though the impacts may not be as dramatic as those of our cousins in south Florida, we do have our problems.

Bay Scallop Argopecten iradians
http://myfwc.com/fishing/saltwater/recreational/bay-scallops/

What can we do about it?

 

The quick answer is reduce our nutrient input.

 

The state has adopted Best Management Practices (BMPs) for farmers and ranchers to help them reduce their impact on ground water and surface water contamination from their lands. Many panhandle farmers and ranchers are already implementing these BMPs and others can.  We encourage them to participate.  Read more at Florida’s Rangeland Agriculture and the Environment: A Natural Partnership http://nwdistrict.ifas.ufl.edu/nat/2015/07/18/floridas-rangeland-agriculture-and-the-environment-a-natural-partnership/.  

 

As development continues to increase across the state, and in the panhandle, sewage infrastructure is having trouble keeping up. This forces developments to use septic tanks.  Many of these septic systems are placed in low-lying areas or in soils where they should not be.  Others still are not being maintained property.  All of this leads to septic leaks and nutrients entering local waterways.  We would encourage local communities to work with new developments to be on municipal sewer lines, and the conversion of septic to sewer in as many existing septic systems as possible.  Read more at Maintaining Your Septic Tank http://nwdistrict.ifas.ufl.edu/nat/2017/04/29/maintain-your-septic-system-to-save-money-and-reduce-water-pollution/.

 

And then there are the lawns. We all enjoy nice looking lawns.  However, many of the landscaping plans include designs that encourage plants that need to be watered and fertilized frequently as well as elevations that encourage runoff from our properties.  Following the BMPs of the Florida Friendly Landscaping ProgramTM can help reduce the impact your lawn has on the nutrient loads of neighboring waterways.  Read more at Florida Friendly Yards – http://nwdistrict.ifas.ufl.edu/nat/2018/06/08/restoring-the-health-of-pensacola-bay-what-can-you-do-to-help-a-florida-friendly-yard/.

 

For those who have boats, there is the Clean Boater Program. This program gives advice on how boaters can reduce their impacts on local waterways.  Read more at Clean Boaterhttps://floridadep.gov/fco/cva/content/clean-boater-program.

 

One last snippet, those who live along the waterways themselves. There is a living shoreline program.  The idea is return your shoreline to a more natural state (similar to the concept of Florida Friendly LandscapingTM).  Doing so will reduce erosion of your property, enhance local fisheries, as well as reduce the amount of nutrients reaching the waterways from surrounding land.  Installing a living shoreline will take some help from your local extension office.  The state actually owns the land below the mean high tide line and, thus, you will need permission (a permit) to do so.  Like the principals of a Florida Friendly Yard, there are specific plants you should use and they should be planted in a specific zone.  Again, your county extension office can help with this.  Read more at The Benefits of a Living Shoreline http://nwdistrict.ifas.ufl.edu/nat/2017/10/06/the-benefits-of-a-living-shoreline/.

 

Though we may not be experiencing the dramatic problems that our friends in south Florida are currently experiencing, we do have our own problems here in the panhandle – and there is plenty we can do to keep the problems from getting worse. Please consider some of them.  You can always contact your local county extension office for more information.

ACF Water War Update: US Supreme Court Rules on Florida v. Georgia

ACF Water War Update: US Supreme Court Rules on Florida v. Georgia

If you have not seen the news yet, the US Supreme Court provided a ruling on June 27, 2018 regarding the decades-long conflict between Florida and Georgia over water use in the Apalachicola-Chattahoochee-Flint tri-state river basin. Guess what; the battle continues. Following the previous findings of the court-appointed Special Master and his recommendation to deny Florida relief in the dispute, there were many disappointed people south of the border between the two states. The recent decision to remand the case back to the Special Master for further consideration has taken many by surprise; happy surprise south of the border and not so happy as you look northward (unless you talk to the attorneys litigating the case, maybe).

The resulting decision kept Florida’s hopes alive for an equitable allocation of water resources in the basin that spans nearly 20,000 square miles of the Southeastern US. At stake, from Florida’s perspective, is the productivity and ecosystem integrity of the Apalachicola River and Bay ecosystem. For Georgia, enough water to supply its growing population and thirsty agricultural interests in the Flint River Basin south of Atlanta.
The Court’s 5–4 decision, found that the Special Master had applied too high a standard regarding “harm and redressability” for Florida’s claims. They ordered the case to be reheard so that appropriate considerations could be given to Florida’s arguments. “The amount of extra water that reaches the Apalachicola may significantly redress the economic and ecological harm that Florida has suffered,” said Justice Breyer, who was joined by Chief Justice John Roberts and Justices Anthony Kennedy, Ruth Bader Ginsburg and Sonya Sotomayor. “Further findings, however, are needed.”

The Court’s opinion does not actually outline any specific solutions for the water battle, and it in no way guarantees a win for Florida, but it does keep the legal challenge alive – along with the hope of better days for Florida’s oyster industry, which has suffered a major fisheries collapse that began around 2012.  Visit this link if you would like to read the syllabus, as well as the full opinion of the High Court.

We should all consider the magnitude of the importance of the Apalachicola River and Bay for our region, due to its connection to the larger Gulf of Mexico. Estuaries like this are crucial links in the life-stages of countless marine organisms, including many we depend on for food and recreation. Blue crabs migrate tremendous distances to spawn in our near shore estuaries. Their young then disperse to populate large areas of coastline. Post-larval shrimp move into our estuaries to grow up after being spawned offshore. Later they swim out as adults to begin the cycle again. It is no wonder the shorelines of our Florida estuaries are dotted with prehistoric shell middens from peoples who thrived near these resource-rich ecosystems. Who knows if the Apalachicola Bay will ever recover to the productivity of its glory days, when a hard-working person could harvest 20 bags of oysters in a day? Regardless, we should all be thankful for what Apalachicola Bay has meant to so many generations of people over such a wide expanse of our Northern Gulf of Mexico coastline. Take just a moment to think about it, please.

Restoring the Health of Pensacola Bay, What Can You Do to Help?  – Mercury and Public Health

Restoring the Health of Pensacola Bay, What Can You Do to Help? – Mercury and Public Health

Shrimp, oysters, blue crab and fish have been harvested from the Pensacola Bay System (PBS) for decades, although there has been a decline in all in recent years. Annual landings (in pounds) have ranged from

  • Fish                        66,000 – 4,600,000   (most are scaienids)
  • Brown shrimp    43,000 – 906,000
  • Oysters                0 – 492,000
  • Blue crab             400 – 137,000

There is a concern about the safety of seafood harvested from our estuary… sort of. Many local residents and visitors ask frequently about the safety of these products.  However, when programs are held to provide this information they are not well attended, and when articles are posted – few view them.  I think there is a concern for the safety of seafood products, particularly those from our estuaries – so I cannot explain the lack of interest in the presentations and articles.

Commercial seafood in Pensacola has a long history.
Photo: Rick O’Connor

One contaminant that gets a lot of press is mercury. The toxic form of mercury is methylmercury.  This form of mercury impairs brain development of fetuses – hearing, vision, and muscle function in adults.  Studies suggests that the primary source of mercury in the waters of the PBS is the atmosphere.  Advisories have been issued for Escambia, Blackwater, and Yellow Rivers.  There have also been advisories for local largemouth and king mackerel.  This is one of the metals whose concentrations within the PBS is higher than neighboring estuaries – especially in our bayous (see https://blogs.ifas.ufl.edu/escambiaco/2018/06/13/restoring-the-health-of-pensacola-bay-what-can-you-do-to-help-bioaccumulation-of-toxins/.) Florida Department of Environmental Protection (FDEP) has issued Total Maximum Daily Loads (TDMLs) for mercury in the PBS.

 

So How Much is Too Much?

 

For monitoring purposes, total mercury (THg) is easier and less expensive to than the toxic form methylmercury (MHg). Many believe the amount of THg is equivalent to the concentration of MHg, and so it is used as a proxy for MHg.

 

Both the U.S. EPA and the FDEP recommend concentrations of THg not be higher than 0.3 ppm, and 0.1 ppm for pregnant women (or women planning a pregnancy).

 

Fish

Since 2000, four studies have been conducted on six species of fish in the PBS. Concentrations of THg ranged from 0.02 – 0.88 ppm and averaged between 0.2 – 0.4 ppm.

 

Blue Crab

Two studies have been conducted since 2007 found mercury concentrations ranged from 0.07 – 1.1 ppm.

 

Oysters

30 years ago, studies were finding concentrations of THg in oysters around 0.02 ppm. Repeated studies between 1986 and 1996 found an increase to 0.3 ppm.

 

Overall

Studies suggest that shrimp and oysters have lower concentrations of THg than blue crab and fish.

 

Seafood has a long history along Florida’s panhandle.
Photo: Betsy Walker

How often have samples exceeded the safe levels suggested by EPA, FDEP, and FDA?

 

Group Recommended highest level % of times samples from PBS exceeded this limit
Subsistence Fishermen 0.049 ppm 50-90%

(89% for blue crab and oysters)

Pregnant females 0.1 ppm 50-90%

(88% for blue crab)

General public 0.3 ppm 5-20%

(12% for blue crabs)

(27% for fish)

Food and Drug Administration recommendation 1.0 ppm 0%

 

The concern for mercury in local seafood has led to a reduction of consuming all seafood by pregnant women – period. Recent studies have shown this can have negative effects on the developing baby as well.  The recommendation is to avoid fish that have been tested high in THg.  Most of these are high on the food chain – such as king mackerel, shark, and swordfish.  You can find the latest on seafood safety and advisories at https://myescambia.com/our-services/natural-resources-management/marine-resources/seafood-safety. Another piece of this story is the belief, by many, that selenium can lower the toxicity of MHg.  Many believe that molar ratios of selenium and mercury greater than 1.0 can reduce the toxicity.  However, there have been no studies on molar ratios of these elements in the PBS.

 

The bottom line on this issue is to be selective on the seafood products you consume.

The most popular seafood species – shrimp.

 

Reference

 

Lewis, M.J., J.T. Kirschenfeld, T. Goodhart. 2016. Environmental Quality of the Pensacola Bay System: Retrospective Review for Future Resource Management and Rehabilitation. U.S. Environmental Protection Agency.  Gulf Breeze FL. EPA/600/R-16/169.

Wild Versus Farmed

Wild Versus Farmed

Laura TIu

Scallops and shrimp over grits.

I have been involved in the aquaculture industry since the late 1980’s when I got my first job out of college on a tropical fish farm in Plant City, FL. As you can imagine, the industry has changed a lot since then.  When folks find out I have worked in aquaculture, the same question seems to arise: “Is farm-raised fish safe to eat as wild caught?”  I would like to say that I don’t understand where this question comes from, but over the years I have seen a bewildering number of mass media headlines touting misinformation about farm-raised fish and not enough touting the benefits.  In fact, I saw a post this week on Facebook actually claiming that tilapia have no skin or bones and cannot be found in the wild, both not true.  It is no wonder people are so confused.  Many of the claims made are not research-based and a quick review of the scientific literature will disprove the statements, but who has time for that?

Aquaculture currently supplies over fifty percent of all seafood consumed and will expand in the future due to a limit on the amount of wild fish that can be sustainably harvested, and increasing demand by a growing population. Sustainable, responsible aquaculture is needed to fill that gap. Fish are farmed using a variety of production methods including ponds, raceways, recirculating land-based systems and in ocean net pens.  Each one of these fish species and production methods comes with pros and cons, similar to the production of livestock and fruits and vegetables.  Each species can be evaluated based on its environmental impact, production method and even country of origin.

The American Heart Foundation recommends eating fish (particularly fatty fish rich in Omega-3s) two times per week. We currently only consume about half of that.  This recommendation includes a variety of farm-raised and wild-caught fish.  Both are crucial to meet current and future demand for seafood and omega-3 fatty acids.  A common misconception is that farmed fish is not as healthy or nutritional valuable as wild caught fish although this claim has been largely disproven.  One recent paper (Trushenski et al, 2017) compared the nutritional values of wild-caught and farmed bluegill, largemouth Bass and hybrid striped bass and concluded that the farmed fish provided more long-chain polyunsaturated fatty acids (LC-PUFAs) per portion that wild fish, however both are excellent sources of high quality protein and nutrients.

With the Lenten season upon us, a time of a traditional increase in seafood consumption, what is an easy way to choose wild and farm-raised seafood?   One website and smartphone app that I find easy to use is Seafood Watch (www.seafoodwatch.org).  Seafood Watch uses an extensive evaluation system using research and a panel of experts to label seafood products as green (best choice), yellow (good alternative) and red (avoid) depending on the variety’s sustainability.

With this information and a little bit of homework, I hope you come to the same conclusion that I have. Both farm-raised fish and wild-caught fish are delicious, nutritious and great additions to your diet.

Baked tilapia, rice and vegetable medley.