Backyard Shiitake Mushrooms: a Tasty and SAFE DIY Project

Backyard Shiitake Mushrooms: a Tasty and SAFE DIY Project

Have you ever eaten a wild mushroom and then wondered afterwards if you might have made a mistake? If you are prone to forage outdoors for tasty treats from nature, I’ll bet you have. The problem is, unless you are harvesting one of a few “foolproof” species of edible fungi, positive identification can be very challenging. Oft-times wild mushroom harvesters take a notion to branch out and seek new varieties that are outside of the identification capabilities of the novice mycologist. This is where folks begin treading on dangerous ground and may be at risk for gastrointestinal distress;

Properly inoculated shiitake logs can be quite productive

with symptoms that may range from a mild upset stomach to permanent damage or death.

Yes, death!

Everyone has heard about poisonous mushrooms but few people realize that some of the deadliest species are look-alikes for some of the tastiest species. And you would not be able to distinguish the difference by nibbling a sample. Even a small sample of some of the “bad actors” can be lethal, leading to painful symptoms and organ failure. If this scares you out taking a risk then this article has served a good purpose.

If you wish to enjoy a safe, tasty experience with a highly-prized mushroom species, just take up the hobby of growing your very own shiitake mushrooms. Shiitake comes from the root Japanese “shii” (meaning oak) and “take” (for mushroom). Shiitake mushrooms are a billion dollar industry in Asia with 92% of the world production coming from Japan. Many culinary and medical uses have been identified. This species was only available as dried mushrooms in the US until 1972 but with the removal of a ban on importing live fungi a commercial industry has blossomed.

Hardwood logs are the key, with oak being a preferred tree species. There are six considerations if you are to be successful:

1. You must acquire living Shiitake inoculum (the mycelial or rooting stage) already growing on a wood medium, usually hardwood dowels or sawdust (internet search will yield many providers).
2. Proper cutting and handling of the logs to be inoculated is important. Cut trees close to the time of inoculation (2 weeks max.), 4-8 inch diameter and 3-4 feet long.
3. Inoculate by drilling holes in the logs, inserting the living inoculum/spawn and seal the holes with melted wax to retain moisture. A single log may have 30-40 holes drilled in it.
4. Place logs in a shady/moist environment (i.e. under the canopy in a woodlot with at least 75% shade).
5. Maintain logs by wetting during dry spells. A sprinkler or mister run for a couple of hours a day works well.
6. Proper harvesting and storage is most important and information is available in many places online.

Shiitake fruiting is usually triggered by changes in temperature and humidity so spring and fall are key times to check your logs. It does not take long for a mushroom to go from the early “pinning” stage to mature, so weekly checks are advised. Significant tropical weather events will also stimulate fruiting. Logs produce mushrooms for at least two years, until the nutrients in the wood are used up.

Don’t be in a hurry though, as the full colonization of the log by the mushroom mycelium will take up to 9 months before mushrooms begin to appear. Remember, beware the risks of harvesting wild fungi. A small-scale shiitake growing operation is a safe alternative for getting your “mushroom-fix.” Also, be ready to compete with a squirrel or two for your crop as they know a good thing when they see it too.

An Intimidating Fish They Call the Stingray

An Intimidating Fish They Call the Stingray

It is now late May and in recent weeks I, and several volunteers, have been surveying the area for terrapins, horseshoe crabs, and monitoring local seagrass beds. We see many creatures when we are out and about; one that has been quite common all over the bay has been the “stingray”.

The cownose ray is often mistaken for the manta ray. It lacks the palps (“horns”) found on the manta.
Photo: Florida Sea Grant

These are intimidating creatures… everyone knows how they can inflict a painful wound using the spine in their tail, but may are not aware that not all “stingrays” can actually use a spine to drive you off – actually, not all “rays” are “stingrays”.

 

So what is a ray?

First, they are fish – but differ from most fish in that they lack a bony skeleton. Rather it is cartilaginous, which makes them close cousins of the sharks.

 

So what is the difference between a shark and a ray?

You would immediately jump on the fact that rays are flat disked-shape fish, and that sharks are more tube-shaped and fish like. This is probably true in most cases, but not all.  The characteristics that separate the two groups are

  • The five gill slits of a shark are on the side of the head – they are on the ventral side (underside) of a ray
  • The pectoral fin begins behind the gill slits in sharks, in front of for the ray group

Not all rays have the whip-like tail that possess a sharp spine; some in fact have a tube-shaped body with a well-developed caudal fin for a tail.

 

There are eight families and 19 species of rays found in the Gulf of Mexico. Some are not common, but others are very much so.

 

Sawfish are large tube-shaped rays with a well-developed caudal fin.  They are easily recognized by their large rostrum possessing “teeth” giving them their common name.  Walking the halls of Sacred Heart Hospital in Pensacola, you will see photos of fishermen posing next to monsters they have captured.  Sawfish can reach lengths of 18 feet… truly intimidating.  However, they are very slow and lethargic fish.  They spend their lives in estuaries, rarely going deeper than 30 feet.  They were easy targets for fishermen who displayed them as if they caught a true monster.  Today they are difficult to find and are protected.  There are still sightings in southwest Florida, and reports from our area, but I have never seen one here.  I sure hope to one day.  There are two species in the Gulf of Mexico.

 

Guitarfish are tube-shaped rays that are very elongated.  They appear to be sharks, albeit their heads are pretty flat.  They more common in the Gulf than the bay and, at times, will congregate near our reefs and fishing piers to breed.  They are often confused with the electric rays called torpedo rays, but guitarfish lack the organs needed to deliver an electric shock.  They have rounded teeth and prefer crustaceans and mollusk to fish.  There is only one species in the Gulf.

 

Torpedo rays can deliver an electric shock – about 35 volts of one.  Though there are stories of these shocking folks to death, I am not aware of any fatalities.  Nonetheless, the shock can be serious and beach goers are warned to be cautious.  I once mistook one buried in the sand for a shell.  Let us just say the jolt got my attention and I may have had a few words for this fish before I returned to the beach.  We have two species of torpedo rays in the Gulf of Mexico.

 

Skates look JUST like stingrays – but they lack the whip-like tail and the venomous spine that goes with it.  They are very common in the inshore waters of the Florida Panhandle and though they lack the terrifying spine we are all concerned about, they do possess a series of small thorn-like spine on the back that can be painful to the bare foot of a swimmer.  Skates are famous for producing the black egg case folks call the “mermaids’ purse”. These are often found dried up along the shore of both the Gulf and they bay and popular items to take home after a fun day at the beach.  There are four species of skates found in the Gulf of Mexico.

 

Stingrays… this is the one… this is the one we are concerned about.  Stingrays can be found on both sides of our barrier islands and like to hide beneath the sand to ambush their prey.  More often than not, when we approach they detect this and leave.  However, sometimes they will remain in the sand hoping not to be detected.  The swimmer then steps on their backs forcing them to whip their long tail over and drive the serrated spine into your foot.  This usually makes you move off them – among other things.  The piercing is painful and spine (which is actually a modified tooth) possesses glands that contain a toxic substance.  It really is no fun to be stung by these guys.  Many people will do what is called the “stingray shuffle” as they move through the water.  This is basically sliding your feet across the sand reducing your chance of stepping on one.  They are no stranger to folks who visit St. Joe Bay.  The spines being modified teeth can be easily replaced after lodging in your foot.  Actually, it is not uncommon to find one with two or three spines in their tails ready to go.  Stingrays do not produce “mermaids’ purses” but rather give live birth.  There are five species in the Gulf of Mexico.

The Atlantic Stingray is one of the common members of the ray group who does possess a venomous spine.
Photo: Florida Museum of Natural History

Butterfly ray is a strange looking fish and easy to recognize.  The wide pectoral fins and small tail gives it the appearance of a butterfly.  Despite the small tail, it does possess a spine.  However, the small tail makes it difficult for the butterfly ray to pierce you with it.  There is only one species in the Gulf, the smooth butterfly ray.

 

Eagle rays are one of the few groups of rays that actually in the middle of the water column instead of sitting on the ocean floor.  They can get quite large and often mistaken for manta rays.  Eagle rays lack the palps (“horns”) that the manta ray possesses.  Rather they have a blunt shaped head and feed on mollusk.  They do have venomous spines but, as with the butterfly ray, their tails are too short to extend and use it the way stingrays do.  There are two species.  The eagle ray is brown and has spots all over its back.  The cownose ray is very common and almost every time I see one, I hear “there go manta rays”… again, they are not mantas.  They have a habit of swimming in the surf and literally body surfing.  Surfers, beachcombers, and fishermen frequently see them.

 

Last but not least is the very large Manta ray.  This large beast can reach 22 feet from wingtip to wing tip.  Like eagle rays, they swim through the ocean rather than sit on the bottom.  They have to large “horns” (called palps) that help funnel plankton into their mouths.  These horns give them one of their common names – the devilfish.  Mantas, like eagle and butterfly rays, do have whip-like tails and a venomous spine, but like the above, their tails are much shorter and so effective placement of the spine in your foot is difficult.

 

Many are concerned when they see rays – thinking that all can inflict a painful spine into your foot – but they are actually really neat animals, and many are very excited to see them.

 

References

 

Hoese, H.D., R.H. Moore. 1977. Fishes of the Gulf of Mexico; Texas, Louisiana, and Adjacent Waters. Texas A&M.  College Station, TX. pp. 327.

 

Shipp, R. L. 2012. Guide to Fishes of the Gulf of Mexico. KME Seabooks. Mobile AL. pp. 250.

Restoring the Health of Pensacola Bay, What Can You Do to Help?  – Sediments

Restoring the Health of Pensacola Bay, What Can You Do to Help? – Sediments

In the mid 1990’s, the Bay Area Resource Council was created. This multi-county (Escambia and Santa Rosa) organization included local scientists and decision makers to help better understand the health of Pensacola Bay, develop a plan for restoration, and work collaboratively to acquire funding to do so.  At the inaugural meeting, many different scientists spoke on a variety of topics.  There were several take-home messages – one of them was that sediments of Pensacola Bay were in poorer health than the water within the water column above it.

Grabs are used by marine scientist to collect samples of sediments from the bottom of the bay.
Photo: Coastal Science NOAA

So, what is wrong with the sediments, and how has this changed since the mid ‘90’s?

 

Based on sediment sample analysis, some researchers consider the Pensacola Bay System the most polluted in the state of Florida… but not everyone. The three bayous (Chico, Texar, and Grande), Escambia Bay, and the downtown waterfront of Pensacola Bay had some of the poorest sediment samples within the system.  Contaminants monitored include trace metals, mercury, non-nutrient organics, pesticides, and dioxins.   These contaminants are dense and do not remain in the water column long.  Instead, they sink into the sediments.  At that time, some suggested that attempts to remove the contaminants could increase their levels within the water column and do more harm than good – thinking it would be better to leave the sediments as they are.  Many of the compounds entered the estuary through run-off.  In some cases in the past, they were discharged directly into a bay or river.

 

Chemicals found in Pensacola estuarine sediments include Arsenic, Zinc, and Copper. Mercury levels at some locations in the bay are higher than other estuaries around the northern Gulf region.  Some non-nutrient organic compounds were not as high as other local estuaries however; bioaccumulation (the increase in contaminant concentrations via the food chain) has been occurring and should be monitored.  Many chemical compounds banned in the 1970’s have long half-lives and are still detected in the sediments today.  Chlorinated pesticides, such as dieldrin, chlordane, DDE, DDD, and DDT are still found in the bayous – and at higher concentrations than neighboring estuaries.

 

This all sounds bad, but are the levels high enough to be toxic to marine organisms?

Herbicides and pesticides can find their way into estuarine systems and contaminate the sediments.
Photo: UF IFAS Washington County Extension

One location, in upper Bayou Texar, seems to be quite toxic to the species of bacteria, invertebrates, fish, and plants tested. These toxic concentrations are partially from chemicals present in run-off, but there is also seepage coming from groundwater contaminated from a nearby Superfund site.  Most of the test suggest that the lethal concentrations are more chronic in nature than acute.

 

So what can be done? What can we do?

 

Well… removing and treating these sediments is quite expensive and is not an option at this time. There are plans to dredge portions of Bayou Chico but the process has undergone extensive scrutiny and permitting.  One thing we can do is reduce the amount that is still entering the bay.  How do we do this?

  • Consider re-landscaping your yard to be “Florida Friendly”. Using the suggestions given within this University of Florida program (http://fyn.ifas.ufl.edu/) you can reduce the amount of fertilizer, herbicide, and pesticides you use – thus reducing the amount entering the estuaries.
  • Florida Friendly Landscaping practices can also reduce the amount of watering your lawn needs. This reduces the amount of run-off reaching the bay and always reduces the amount of money you spend on watering and lawn chemicals.
  • The Florida Department of Environmental Protection’s Clean Boater program provides tips and suggestions that reduce the amount of hazardous chemicals that enter the bay from cleaning and maintaining vessels. https://floridadep.gov/fco/cva/content/clean-boater-program.

The sediments of the bay have suffered the abuse of the past. However, with better practices, we can reduce our impact in the future.

Florida Friendly Landscaping saves money and reduces our impact on the estuarine environment.
Photo: UF IFAS

Reference

 

Lewis, M.J., J.T. Kirschenfeld, T. Goodhart. 2016. Environmental Quality of the Pensacola Bay System: Retrospective Review for Future Resource Management and Rehabilitation. U.S. Environmental Protection Agency.  Gulf Breeze FL. EPA/600/R-16/169.

Camp Timpoochee: Marine Camps 2018

Camp Timpoochee: Marine Camps 2018

Are you interested in learning about marine life, going fishing, or exploring the underwater world with a mask and snorkel? If so, this is the camp for you! This local education opportunity for budding marine scientists will be happening this summer at Camp Timpoochee in Niceville, FL.   The camps enable participants to explore the marine and aquatic ecosystems of Northwest Florida; especially that of the Choctawhatchee Bay. Campers get to experience Florida’s marine environment through fishing, boating snorkeling, games, STEM (science, technology, engineering & math) activities and other outdoor adventures. University of Florida Sea Grant Marine Agents and State 4-H Staff partner to provide hands-on activities exploring and understanding the coastal environment.

Sampling the benthic community at Timpoochee.

Florida Sea Grant has a long history of supporting environmental education for youth and adults to help them become better stewards of the coastal zone. This is accomplished by providing awareness of how our actions affect the health of our watersheds, oceans and coasts and marine camp is a great opportunity for sharing that information. Many of the Sea Grant youth activities use curriculum developed by the national Sea Grant program and geared toward increasing student competency in math, science, chemistry and biology.  The curriculum is fun and interesting!

 

Marine Camp is open to 4-H members and non 4-H members between the ages of 8-13 (Junior Camp) and, new this year, ages 14-17 (Senior Camp).  There will be two Junior Camps in 2018.  The July 23-27 camp is full, but there are still openings for the June 25-29 session.  The cost for Junior Marine Camp is $275.00 for the week.  A more intensive Senior Marine Camp has been scheduled for July 16-20.  This camp will contain a community service component and costs $300 for the week.

 

If Marine Camp sounds interesting to someone you know, visit the Camp Timpoochee website at http://florida4h.org/camps_/specialty-camps/marine/ for the 2018 dates and registration instructions.  A daily snack from the canteen and a summer camp T-shirt are included in the camp fees, along with three nutritious meals per day prepared on site by our certified food safety staff. All cabins are air-conditioned.  So many surprises await at marine camp, come join the fun.

Seining the sea grass at Timpoochee.

Larval fish in the Timpoochee oyster reef.

Restoring the Health of Pensacola Bay, what can you do to help? Biodiversity

Restoring the Health of Pensacola Bay, what can you do to help? Biodiversity

Records of the variety of aquatic life in Pensacola Bay go back to the 18th century.  According to these reports, over 1400 species of plants and animals call Pensacola Bay home.  Many of them depend on seagrass, oyster reefs, or marshes to complete their life cycle.  The greatest diversity and abundance are found on the oyster reefs.  Finfish and shellfish in the bay have sustained humans as a food source for centuries.  However, we know that the alligator, turtles, and a variety of birds and mammals have also been important.  In this article, we will focus on the aquatic species.

Red Drum – photo credit Florida Fish and Wildlife

When people think of aquatic life in the bay, they first think of fish. About 200 species call Pensacola Bay home.  The most abundant are the true estuarine fish, such as croakers, sardines, and minnows.  There are a variety of marine transient fish that can be found such as jacks, mackerels, and some species of sharks.  Spot and Atlantic Croaker are the most abundant members of the croaker family, and are still an important target fish for locals.  Anyone who has snorkeled or cast a line with cut bait knows how common pinfish can be, and those who have pulled bait nets are very familiar with the silverside minnows and anchovies.

 

I have pulled many a seine net over the years assessing the diversity and abundance of the nearshore fish populations and logged 101 species. In addition to those listed above, killifish (also locally known as “bull minnows”) are a common capture.  For a few years, we were involved in trawling in deeper waters where we collected a variety of flounder, silver perch, grunts and snapper.  Sea robins are an interesting member of our community and gag grouper were captured occasionally.  The number and variety of fish found varies with seasons and is greatest in June.  The diversity and abundance of estuarine fishes in our bay is very similar to neighboring estuaries.

 

The second thing people think of when they think of aquatic life in the bay are shellfish. These would include the crabs, shrimp, and oysters.  However, the most abundant macro-invertebrates in our bay are those that can tolerate environmental stress and live in the surface layers of the sediments – these are the worms and crustaceans.  There are numerous varieties of segmented polychaete worms, who are famous for building tunnels with “volcano” openings.  They are also common within oyster reefs, feeding on all sorts of organic debris.  Blue crab are common throughout the bay and provided both a commercial and recreational fishery for years.  Brown and white shrimp are both found and have been the most popular seafood with locals for years.

The famous blue crab.
Photo: FWC

During my lifetime, the only marine mammal commonly seen has been the Atlantic Bottlenose Dolphin, and these are found in many parts of the bay. Years back, I heard accounts of harbor porpoise, but never actually saw one.  An historic occurring marine mammal, who seems to be making a comeback, is the Florida Manatee.  Sightings of this animal have been reported in a variety of locations in recent years.

 

Snakes, turtles, and alligators are all found in the bay area. There is really only one saline snake and this is the gulf coast salt marsh snake.  However, nontraditional estuarine snakes, such as the cottonmouth, are becoming more common in and near the bay.  Though we have a great variety of turtles in our rivers, only one true estuarine turtle exist in the country, the diamondback terrapin – and this turtle can be found in parts of our bay.  Sea turtles do venture into the bay searching for food, particularly the green turtle who is fond of seagrasses.

 

Many forget the small planktonic animals that drift in the water column, but they are there – about 100 species of them. Copepods are small roach looking crustaceans that are by far the most abundant member of the zooplankton, particularly the species known as Acartia tonsa – which makes up 82% of the abundance in our bay.  These small animals are an important link in the food chain of almost every other member of the bay community.  The zooplankton variety in Pensacola Bay is very similar to those of neighboring estuaries.

 

And then there are the plants…

By far, the most diverse group of organisms in the bay are the microscopic plants known as phytoplankton – with over 400 species reported. Much of the bay is too deep to support traditional forms of plants and so these become a key producer of food for many species.  The diversity and abundance is greatest in the spring and fall.  70% of the phytoplankton are from a group called dinoflagellates, small plants that have two hair-like flagella to orient, and even propel, themselves.  Some of them produce the bioluminescence we sometimes see and others produce what we call red tide.  During the summer, the populations change and the more abundant forms are diatoms.  These lack the flagella of the dinoflagellates, but they do produce beautiful shells of silica.

There are at least 400 species of periphytic algae (attaching). Green algae are the most abundant and are most common in the local bayous.  Cyanobacteria, which were once thought to be algae, are the most abundant in the marshes and periphytic diatoms dominate in the Sound.

 

And last, are the submergent and emergent grasses.

Submergent grasses are known as seagrasses. We have three species that like the higher saline waters.  These are turtle, shoal, and widgeon grass.  Turtle and shoal grass need the water to be at least 25 parts per thousand and are the dominate species in the lower portions of the bay.  Widgeon grass can tolerate waters as low as 10 ppt and are found in the bayous and the upper portions of the bay system.  Tapegrass only survives in freshwater and are found in the lower reaches of the rivers where they meet the bay.

Emergent grasses are what we call marsh grasses. Two species, Black Needlerush and Smooth Cordgrass dominate these.  There are pockets of salt marshes found all over the bay system.

 

So how is the health of our aquatic life?

As you might expect, the diversity and abundance have declined over time, particularly since the 1950’s. One firsthand account of the change, describe a bayou that was clear, full of grass, and harbored shrimp the size of your hand.  Then they were gone.  He remembered the first change being water clarity.  As development along our waterfront increased, the clarity decreased and the aquatic life declined.  This has happened all over the bay system.  Increase in run-off not only brought sand and sediment lowering water clarity, it also brought chemicals that both the plants and animals could not tolerate.  Much of the point source pollution has been controlled but non-point pollution is still problematic.  Fertilizers, pesticides and herbicides, oils and grease, and sediment have all been problematic.  These can be reduced.  Following recommendations from the Florida Friendly Landscaping website, (http://www.floridayards.org/.) property owners can alter how they are currently managing their landscape to reduce their impact on the aquatic life on the bay.  Clean Marina (https://floridadep.gov/fco/clean-marina ) and Clean Boater (https://floridadep.gov/fco/cva/content/clean-boater-program ) recommendations can help reduce the impact from the boating community.  Sustainable fishing practices, such as safe catch and release methods for unwanted fish and removing all monofilament are good practices.  In 2019, Sea Grant will begin a program training local citizens how to monitor the diversity and abundance of aquatic species.  If interested in volunteering, stay tuned.

 

Reference

 

Lewis, M.J., J.T. Kirschenfeld, T. Goodhart. 2016. Environmental Quality of the Pensacola Bay System: Retrospective Review for Future Resource Management and Rehabilitation. U.S. Environmental Protection Agency.  Gulf Breeze FL. EPA/600/R-16/169.

Restoring the Health of Pensacola Bay; what can you do to help? Introduction

Restoring the Health of Pensacola Bay; what can you do to help? Introduction

Humans have inhabited the shores of Pensacola Bay for centuries. Impacts on the ecology have happened all along, but the major impacts have occurred in the latter half of the 20th century.  There has been an increase in human population, an increase in development, a decrease in water clarity, a decrease in seagrasses, and a decrease in the abundance of some marine organisms – like horseshoe crabs, scallops, and some marine fishes.  There has also been an increase in inorganic and organic compounds from stormwater run-off, fish kills, and health advisories due excessive nutrients and fecal bacteria in local waters.

A view of Pensacola Bay from Santa Rosa Island.
Photo: Rick O’Connor

Since the 1970’s, there have been efforts to help restore the health of the bay. Seagrasses have returned in some areas, fish kills have significantly reduced, and occasionally residents find scallops and horseshoe crabs – but there is still more to do.  In this series of articles, I will present information provided in a recent publication (Lewis, et. al. 2016) and from citizen science monitoring.  We will begin with an introduction to the bay itself.

 

The Pensacola Bay System is the fourth largest estuarine system in the state of Florida. The system includes Blackwater, Escambia, East, and Pensacola Bays.  There are numerous smaller bayous, such as Indian, Mulat, and Hoffman, and three larger ones, which include Texar, Chico, and Grande.  There are two lagoons that extend east and west of the pass.  To the west is Big Lagoon and to the east is Santa Rosa Sound.  The surface area of this bay system is about 144 mi2 and the coastline runs about 552 miles in length.  There are four rivers that discharge into the system: the Escambia, Blackwater, Yellow, and East Rivers.  The majority of watershed is in Alabama and covers about 7000 mi2.  The mouth of the bay is located at the Pensacola Pass near Ft. Pickens and is 0.5 miles across.  Depending on the source, the flush time for the entire bay has been reported between 18 and 200 days.

 

There are several ecosystems found within the bay system. Seagrasses are be found throughout the bay and bayous, but are more prevalent in Big Lagoon and Santa Rosa Sound.  Oyster reefs have provided income for some in the East Bay area in the past, but production has declined in the last 50 years.  Salt marshes are found throughout the bay as well, but the greatest acreage is in the Garcon area of Santa Rosa County.  There are, of course, freshwater marshes near the mouths of the rivers with the largest being at the mouth of the Escambia River.

Members of the herring family are ones who are most often found during a fish kill triggered by hypoxia.
Photo: Madeline

Members of the drum family are one of the more common fishes found in the system and would include fish like the Spot and Atlantic Croaker. However, speckled trout, striped mullet, redfish, several species of flounder, have also been targets for local fishermen.  Target fish include sardines, silversides, stingrays, pinfish, and killifish.  Brown shrimp, oysters, and blue crab have historically provided a fishery for locals, but other invertebrates include several species of jellyfish, stone crabs, fiddler crabs, hermit crabs, grass shrimp, several species of snails, clams, bay squid, octopus, and even starfish.  There is also a variety of benthic worms found within the sediments.

A finger of a salt marsh on Santa Rosa Island. The water here is saline, particularly during high tide. Photo: Rick O’Connor

There has been a decline in overall environmental quality since 1900 but, again, the biggest impacts have been between 1950 and 1970. Fish kills, a reduction in shrimp harvest, and hypoxia (a lack of dissolved oxygen) have all been problems.

 

In the articles to follow we will look deeper into specific environmental topics concerning the health of Pensacola Bay.

 

 

References

 

Lewis, M.J., J.T. Kirschenfeld, T. Goodhart. 2016. Environmental Quality of the Pensacola Bay System: Retrospective Review for Future Resource Management and Rehabilitation. U.S. Environmental Protection Agency.  Gulf Breeze FL. EPA/600/R-16/169.