Select Page
Sea Bass and Grouper of the Florida Panhandle

Sea Bass and Grouper of the Florida Panhandle

When you look over the species of sea basses and groupers from the Gulf of Mexico it is a very confusing group.  Hoese and Moore1 mention the connections to other families and how several species have gone through multiple taxonomic name changes over the years – its just a confusing group.

Gag grouper.
Photo: National Oceanic and Atmospheric Administration

But when you say “grouper” everyone knows what you are talking about, and everyone wants a grouper sandwich.  This became a problem because what people were serving as “grouper” may not have been “grouper”.  And as we just mentioned what is a grouper anyway?  The families and genera have changed frequently.  Well, this will probably get more technical than we want, but to sort it out – at least using the method Hoese and Moore did in 1977 – we will have to get a bit technical.

 

“Groupers” are in the family Serranidae.  This family includes 34 species of “sea bass” type fish.  Serranids differ from snappers in that they lack teeth on the vomer (roof of their mouths) and they differ from “temperate basses” (Family Percichthyidae) in that their dorsal fin is continuous, not separated into two fins.  These are two fish that groupers have been confused with.

Banked Sea Bass.
Photo: National Oceanic and Atmospheric Administration.

We can subdivide the serranids into two additional groups.  The “sea basses” have fewer than 10 spines in their dorsal fin.  There are 10 genera and 18 species of them.  They have common names like “bass”, “flags”, “barbiers”, “hamlets”, “perch”, and “tattlers”.  They are small and range in size from 2 – 18 inches in length.  Most are bottom reef fish with little commercial value for fishermen.  Most are restricted to the tropical parts of the Atlantic basin but two are only found in the northwestern Gulf, one is only found in the eastern Gulf, and one has been found in both the Atlantic and Pacific.  The biogeography of this group is very interesting.  The same species found in both the Atlantic and Pacific suggest an ancient origin.  The variety of serranid sea bass suggest a lot of isolation between groups and a lot of speciation.

 

The ”groupers” have 10 or more spines in their dorsal fin.  There are two genera in this group.  Those in the genus Epinephelus have 8-10 spines in their anal fin and have some canine teeth.  Those in the genus Mycteroperca have 10-12 spines in their anal fin and lack canine teeth.  Within these two genera there are 15 species of grouper, though the common names of “hind”, “gag”, “scamp” are also used.  Most of these are found along the eastern United States and Gulf of Mexico.  Five species are only found in the tropical parts of the south Atlantic region, five are also found across the Atlantic along the coast of Africa and Europe, and – like the “sea bass” two have been found in both the Atlantic and the Pacific.  They range in size from six inches to seven feet in length.  The Goliath Grouper can obtain weights of 700 pounds!  Like the sea bass, groupers prefer structure and can live a great depths.  Unlike sea bass they are heavily sought by commercial and recreational anglers and are one of the more economically important groups of fish in the Gulf of Mexico.

The massive size of a goliath grouper. Photo: Bryan Fluech Florida Sea Grant

One interesting note on this family of fish is that most are hermaphroditic.  The means they have both ovaries (to produce eggs) and testes (to produce sperm).  Sequential hermaphrodism is when a species is born one sex but becomes the other later in life.  This is the case with most groupers, who are born female and become male later in life.  However, the belted sand bass (Serranus subligarius) is a true hermaphrodite being able to produce sperm and egg at the same time – even being able to self-fertilize.

 

For many along the Florida panhandle, their biogeographic distribution and sex do not matter.  It is a great tasting fish and very popular with anglers.  For those with a little more interest in natural history of fish in our area, the biology and diversity of this group is one of the more interesting ones.

 

Reference

 

1 Hoese, H.D., Moore, R.H. 1977.  Fishes of the Gulf of Mexico; Texas, Louisiana, and Adjacent Waters.  Texas A&M Press.  College Station TX.  Pp. 327.

Snook in the Florida Panhandle

Snook in the Florida Panhandle

Snook… Wait did you say Snook in the Florida panhandle?

Yep… they are not common, but they have seen here.

 

For those who do not know the fish and do not understand why seeing them is strange, this is a more tropical species associated with tarpon.  In the early years of tourism in Florida tarpon fishing was one of the main reasons people came.  Though bonefish and snook fishing were not has popular as tarpon, they were good alternatives and today snook fishing is popular in central and south Florida… but not in the north.

This snook was captured near Cedar Key. These tropical fish are becoming more common in the northern Gulf of Mexico.
Photo: UF IFAS

This fish is extremely sensitive to cold water, not liking anything under 60° F.  They frequent the same habitats as tarpon, mangroves and marshes.  They are euryhaline (having a wide tolerance for salinity) and can be found in freshwater rivers and springs.  Actually, near river mouths is a place they frequent.  The younger fish are more often found within the estuaries and adults have been found in the Gulf of Mexico.  Again, this is a more tropical fish with records in Florida north of Tampa being rare.  In the western Gulf the story is the same, almost all records are south of Galveston, Texas.  Until recently…

 

Hoese and Moore1 cite a paper by Baughman (1943) that indicated the range of the fish had actually moved further south.  One reason given was the loss of the much-needed salt marsh and mangrove habitats from human development.  But in recent years there have more reports north of Tampa.  Purtlebaugh (et al.)2 published a paper in 2020 indicating an increase in snook captured in the Cedar Key area of the Big Bend beginning in 2007.  At first records only included adults, and the thought was these were “wayward” drifters in the region.  But by 2018 they were capturing fish in all size classes and there was evidence of breeding going in the area.  The range of the fish seemed to be moving north.  The study suggests they still need warm water locations to over winter, and, like the manatees, springs seem to be working fine.  But another piece of the explanation has been the reduction of hard freezes during winter in this part of the Gulf.  Climate change may be playing a role here as well.

 

There seems to be other tropical species dispersing northward in a process some call “tropicalization” including the mangroves.  There have been anecdotal reports of snook near Apalachicola where mangroves are becoming more common, and I know of two that were caught in Mobile Bay.  There are mangroves growing on the Mississippi barrier islands as well.  While explaining this during a presentation I was doing for a local group, a gentleman showed me a photo of a snook on his phone.  I asked if he caught it in the Pensacola area.  He replied yes.  When I asked where, he just smiled… 😊 He was not going to share that.  Cool.

 

There is no evidence that snook have established breeding populations are in our waters.  Especially after this winter with multiple days with temperatures in the 30s, it is unlikely snook would be found here.  But it is still interesting, and we encourage anyone who does catch one, to report it to us.

 

References

 

1 Hoese, H.D., Moore, R.H. 1977. Fishes of the Gulf of Mexico; Texas, Louisiana, and Adjacent Waters. Texas A&M Press. College Station Tx. Pp 327.

 

2 Purtlebaugh CH, Martin CW, Allen MS (2020) Poleward expansion of common snook Centropomus undecimalis in the northeastern Gulf of Mexico and future research needs. PLoS ONE 15(6): e0234083. https://doi.org/10.1371/journal.pone.0234083.

Pipefish of the Florida Panhandle

Pipefish of the Florida Panhandle

I recently posted an article about the seahorses of the Florida panhandle.  It would be remiss of me if I did not include their close cousins the pipefish.  Where seahorses are well known but hard to find, pipefish are easy to find but not well known.

The seahorse-like pipefish.
Photo: University of Florida

Pipefish are in the same family as seahorses, Syngnathidae, and are basically elongated seahorses.  Pulling seine nets in local grassbeds we often catch them.  Students always ask what they are.  “Are these needlefish?”  is a frequent question.  I reply “no, they are pipefish”.  Which then comes “pikefish?”.  To which I reply “No, PIPEfish… like P-I-P-E… – they are basically elongated seahorses”.  And then there is always – “coool”.  To which I reply “yes… very cool”.

 

Pipefish have the same body armor, body rings, and long tube snout of the seahorse.  However, they lack the curled prehensile tail for a more elongated body, looking more a grass blade than their cousins.  They actually have a caudal fin (the fin most call “fish tail”).  Most range between 3-6 inches long but the chain pipefish can reach a length of 10 inches, this is the “big boy” of the group.  Like seahorses, they hide in the grass using their tube-shaped mouths to suck in small planktonic food.  Like the seahorses, the males’ possess a brood pouch to carry the fertilized eggs and give live birth (ovoviviparous).

 

The pipefish can quickly be divided into two groups – those with long snouts, and those with short – and this can be easily seen when captured in a net.  After that identification gets a bit tricky, you have to count rays in the fins or rings on the body.  It is sufficed to say, “it’s a pipefish” and leave it at that.

 

Those with long snouts include the Opossum, Chain, Dusky, and Sargassum pipefish.

 

The Opossum Pipefish (Microphis brachyurus) is about 3 inches long and was not reported from the northwestern Gulf of Mexico according to Hoese and Moore1.  In the eastern Gulf, our way, it is considered rare but has been found in salt marshes, seagrasses, and in Sargassum mats drifting in from the Gulf.  The Florida Museum of Natural History list this fish as a “marine invader”2.  In 1991 NOAA listed it as a species of concern due to its decline across the region3.  There are reports of this pipefish entering freshwater creeks within our estuaries.

 

The Chain Pipefish (Syngnathus louisianae) has a very long snout and is the “big boy” of the group reaching 10 inches in length.  It is quite common along the panhandle and has one of the larger ranges of this group, found all along the Atlantic coast, throughout the Gulf of Mexico and in the Caribbean.

 

The Dusky Pipefish (Syngnathus floridae) is a long-snout, large pipefish reaching a length of eight inches.  It prefers higher salinity than many pipefish and is found throughout the Gulf of Mexico and along the Atlantic seaboard often offshore.

 

The Sargassum Pipefish (Syngnathus pelagicus).  This is a good scientific name for this fish (pelagicus) for it lives on the large mats of Sargassum weed that drifts across the oceans.  Because of this it has a worldwide distribution.  This longnose pipefish reaches the typical length of six inches.  It lives as many other pipefish do hiding in the grass snapping up food when it comes close enough but it’s habitat is often drifting offshore and inshore sightings of this species are rare.

 

There are three species of “short-snout” pipefish.

 

The Fringed Pipefish (Anarchopterus crinigerus) is a smaller pipefish reaching only three inches.  It seems to be absent in the western Gulf but is found along the Florida panhandle, the Gulf coast of peninsula Florida, and through the Caribbean to Brazil.

 

The Northern Pipefish (Syngnathus fuscus) reaches a length of six inches.  It is very common along the Atlantic seaboard but Hoese and Moore1 report only four specimens from the Gulf of Mexico.  This one would be considered very rare, and an expert should identify it if one thinks they have it.

 

The Gulf Pipefish (Syngnathus scovelli) is one of the more common pipefish collected in our waters.  It is a short-snout species reaching the typical six inches but has these distinct bluish-gray bars that run vertically along the sides.  It is found throughout the Gulf of Mexico and even into some freshwater habitats.  The Florida Museum of Natural History also list this species as a marine invader4.

 

I am not sure how much seining you do along our waterways, but if you do any within the grassbeds you are sure to find one of these unique and interesting fish.

 

References

 

1 Hoese, H.D., Moore, R.H. 1977. Fishes of the Gulf of Mexico. Texas A&M Press, College Station TX. Pp. 327.

 

2 Opossum pipefish.  Discover Fishes.  Florida Museum of Natural History.  https://www.floridamuseum.ufl.edu/discover-fish/florida-fishes-gallery/opossum-pipefish/.

 

3 Opossum Pipefish.  Species of Concern.  National Oceanic and Atmospheric Administration, National Marine Fisheries Service.  https://www.nrc.gov/docs/ML1224/ML12240A312.pdf.

 

4 Gulf Pipefish.  Discover Fishes. Florida Museum of Natural History.  https://www.floridamuseum.ufl.edu/discover-fish/florida-fishes-gallery/gulf-pipefish/.

Why do we have so many springs in Florida?

Why do we have so many springs in Florida?

Jackson Blue Springs discharging from the Floridan Aquifer. Jackson County, FL. Image: Doug Mayo, UF/IFAS Extension.

Florida has one of the largest concentrations of freshwater springs in the world. More than 1000 have been identified statewide, and here in the Florida Panhandle, more than 250 have been found.  Not only are they an important source of potable water, springs have enormous recreational and cultural value in our state. There is nothing like taking a cool swim in the crystal-clear waters of these unique, beautiful systems.

How do springs form?

We have so many springs in Florida because of the state’s geology.  Florida is underlain by thick layers of limestone (calcium carbonate) and dolomite (calcium magnesium carbonate) that are easily dissolved by rainwater that percolates into the ground. Rainwater is naturally slightly acidic (with a pH of about 5 to 5.6), and as it moves through the limestone and dolomite, it dissolves the rock and forms fissures, conduits, and caves that can store water. In areas where the limestone is close to the surface, sinkholes and springs are common. Springs form when groundwater that is under pressure flows out through natural openings in the ground. Most of our springs are found in North and North-Central Florida, where the limestone and dolomite are found closest to the surface.

Springs are windows to the Floridan Aquifer, which supplies most of Florida’s drinking water. Image: Ichetucknee Blue Hole, A. Albertin.

These thick layers of limestone and dolomite that are below us, with pores, fissures, conduits, and caves that store water, make up the Floridan Aquifer. The Floridan Aquifer includes all of Florida and parts of Georgia, South Carolina, and Alabama. The thickness of the aquifer varies widely, ranging from 250 ft. thick in parts of Georgia, to about 3,000 ft. thick in South Florida. The Floridan is one of the most productive aquifer systems in the world.  It provides drinking water to about 11 million Floridians and is recharged by rainfall.

How are springs classified?

Springs are commonly classified by their discharge or flow rate, which is measured in cubic feet or cubic meters per second. First magnitude springs have a flow rate of 100 cubic feet or more per second, 2nd magnitude springs have a rate of 10-100 ft.3/sec., 3rd magnitude flows are 1-10 ft.3/sec. and so on. We have 33 first magnitude springs in the state, and the majority of these are found in state parks. These springs pump out massive amounts of water. A flow rate of 100 ft.3/sec. translates to 65 million gallons per day. Larger springs in Florida supply the base flow for many streams and rivers.

What affects spring flow?

Multiple factors can affect the amount of water that flows from springs. These include the amount of rainfall, size of caverns and conduits that the water is flowing through, water pressure in the aquifer, and the size of the spring’s recharge basin. A recharge basin is the land area that contributes water to the spring – surface water and rainwater that falls on this area can seep into the ground and end up as part of the spring’s discharge. Drought and activities such as groundwater withdrawals through pumping can reduce flow from springs systems.

If you haven’t experienced the beauty of a Florida Spring, there is really nothing quite like it. Here in the panhandle, springs such as Wakulla, Jackson Blue, Pitt, Williford, Morrison, Ponce de Leon, Vortex, and Cypress Springs are some of the areas that offer wonderful recreational opportunities. The Florida Department of Environmental Protection has a ‘springs finder’ web page with an interactive map that can help you locate these and many other springs throughout the state.

https://nwdistrict.ifas.ufl.edu/nat/2020/04/09/the-incredible-floridan-aquifer/

Batfish of the Florida Panhandle

Batfish of the Florida Panhandle

This is another one of those fish in this series that is not often seen but when you do see one you will ask “what is that?” – So, we will answer the question by including it here.

 

Like the frogfish we have already written about, batfish are described by Hoese and Moore1 as “grotesque” and they take it a step further by telling us all “ugly” fish (as they say) are grouped into what many call “dogfish”.  As with the frogfish, I am not sure I would use the term grotesque, but they are strange looking.

Juvenile Polka-Dot Batfish (Ogcocephalus radiatus) in the polluted intracoastal waterway in Palm Beach County, FL.
Photo: Science Photo Library

I have only seen a couple in my life.   Hoese and Moore mention they are often brought up in shrimp trawls, and I have seen them while doing trawl surveys at Dauphin Island Sea Lab.  I also found one while snorkeling along a seawall near Gulf Breeze FL.  So, they are out there just not encountered as often, or as well known, or seen as frequently, as many other fish in the Gulf.  Another reason to include this group here.

 

It is hard to describe what this fish looks like.  They are, as they say, dorso-ventrally flattened – meaning from top to bottom, not side to side – like a stingray.  They have two fins extending from parts of their body that sort of “stick out of the side” and appear to be like webbed feet with which they walk.  Actually, there are these small, modified fins on the ventral side that are used to walk on the bottom – they are bottom dwelling (benthic) fish for sure.  Like their relatives the frogfish they have a modified spine that is used like a fishing lure.  Like the frogfish, the shape of that lure can be used to identify species.  But unlike the frogfish the lure is located between their mouth (which near the bottom of the body and is very small) and a pointed rostrum that extends from the top of their head like a battering ram.  This lure is extended to lure not fish swimming above, as with the frogfish, but small creatures in and on the sand.  Because of this they do not call the lure an illicium but a esca.  These are strange looking fish.

 

Hoese and Moore list four different species and indicate there are at least three others in the Gulf of Mexico.  Most are associated with the continental shelf of the Gulf and not inland where we might see them snorkeling around.  A couple of species are more associated the continental slope, which drops from the continental shelf to the deep sea.  But the Polka-dot batfish (Ogocephalus cubifrons) is reported as being inshore and is the species I have encountered.

 

Many species are only described as being from the shelf of the Gulf of Mexico and no other oceans.  Some of them are even more restricted to either the eastern or western Gulf.  This all suggests that batfish do have biogeographic barriers of some sort restricting their dispersal.  Being offshore benthic fish, your first guess would be substrate.  Usually in those locations the temperature and salinities are pretty similar but the material on the bottom (rock, shell, sand, canyons, etc.) are not.  However, several articles mention that batfish can be found over rocky or sandy bottom2,3,4 and the polka-dot batfish can be found in grassbeds as well2.  So, I am not sure what the possible barrier is, but several do have a limited range.  The east-west split could very well be the DeSoto Canyon off the coast of Pensacola.

 

All of that said, it is a very interesting group of fish that for one species you might encounter while out and about snorkeling or diving in the Florida panhandle.

 

References

 

1 Hoese, H.D., Moore, R.H. 1977. Fishes of the Gulf of Mexico; Texas, Louisiana, and Adjacent Waters.  Texas A&M Press.  College Station, TX.  Pp. 327.

 

2 Ogocephalus cubifrons, Polka-dot batfish. 2017. Discover Fishes. Florida Museum of Natural History.  https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/ogcocephalus-cubifrons/.

 

3 The Red-lipped Batfish. 2014.  Ashland Vertebrate Biology. Ashland University, Ohio.  http://ashlandvertbio.blogspot.com/2014/12/the-red-lipped-batfish.html.

 

4 Cocos Batfish, Ogocephalus porrectus. 2015. Smithsonian Tropical Research Institute.  https://biogeodb.stri.si.edu/sftep/en/thefishes/species/777.