Beware of Root-Knot Nematodes in Your Garden

Beware of Root-Knot Nematodes in Your Garden

Recently, I received a call about a garden not producing the way it used to. After speaking with the homeowner, I decided to take a visit to see what was going on. On my visit, I could see that the tomatoes were stunted, yellow and wilting, the squash plants were flowering but not setting fruit, and the okra was stunted. After digging up some of the sick plants and examining the roots, the problem was as clear as day…root-knot nematodes.

Galls on roots from root-knot nematodes

Root-knot nematodes are microscopic, unsegmented roundworms that live in the soil and feed on the roots of many common garden plants. Some of the most commonly damaged crops are tomatoes, potatoes, okra, beans, peppers, eggplants, peas, cucumbers, carrots, field peas, squash, and melons. Root-knot nematodes enter the root and feed, causing knots or galls to form. These galls are easily recognizable on the roots. If you’re inspecting the roots of beans or peas, be careful not to confuse nematode galls with the nitrogen-fixing nodules that are a normal part of the root system. As the nematodes feed, the root system of the plant becomes damaged and the plant is unable to take up water and nutrients from the soil. As a result, the plant may show symptoms of stunting, yellowing, and wilting.

What can I do about nematodes?
There are currently no nematicides labeled for use in the home garden but the best means of root-knot nematode management involves using a combination of strategies that make your garden less susceptible to attack.

Grow Resistant Varieties
Some varieties of crops are resistant to root-knot nematodes. This means is that a particular nematode can’t reproduce on the plant roots. When buying seed, read the variety label. The label may have ‘VFN’ written in capital letters. These letters indicate that the variety has resistance to certain diseases: V = Verticillium wilt; F = Fusarium wilt; and N = root-knot nematode. It’s best to use resistant varieties when root-knot nematodes are present.

Tomato plant showing signs of nematode damage – yellowing and wilting.

Sanitation
If you suspect you may have a nematode problem, be sure not to move soil or infected plant roots from an infected area to a clean area. Nematodes can easily be spread by garden tillers, hand tools, etc. so be sure to disinfect all equipment after use in problem areas.
Infected roots left in the soil can continue to harbor nematodes. After the crop is harvested, pull up the roots and get rid of them. Tilling the soil can kill nematodes by exposing them to sunlight.

Cover crops and Crop Rotation
Cover crops and crop rotation isn’t just a concept for farmers…gardeners need to implement the same practices! While this may take some planning, it is the most effective way to reduce pests and diseases.
Cover crops are crops that are not harvested and are typically planted between harvestable crops. They help improve soil quality, prevent soil erosion, and help control pests and diseases. Selecting cover crops that aren’t susceptible to root-knot nematode attack is key. When growing a cover crop that nematodes can’t reproduce on, populations should decline or not build up to begin with. Grain sorghum and millet can be planted as a summer cover crop and rye in the winter. French marigolds have been shown to reduce nematode populations as well.
Another simple way to manage root-knot nematodes is by crop rotation. Crop rotation is the practice of not growing crops that are susceptible to nematode attack, in the same spot for more than one year. Crops that aren’t susceptible to attack are cool season crops in the cabbage family such as broccoli, cauliflower, Brussels sprouts, collards and kale.

Root-knot nematodes can wreck havoc on a garden so it’s important to take the necessary precautions to avoid them. It may require planning and patience but it will be worth it in the long run!

For more information on this topic, use the links to the following publications:

Nematode Management in the Vegetable Garden

Featured Creature: Nematodes

Why are the Azaleas “Bleaching Out”?

Why are the Azaleas “Bleaching Out”?

Leaf with color fading

Damage caused by azalea lace bug, Stephanitis pyrioides (Scott), feeding. Photograph by James. L. Castner, University of Florida. Severely damaged leaves become heavily discolored and eventually dry or fall off. Symptoms may sometimes be confused with mite injury, but the presence of black varnish-like excrement, frequently with cast skins attached, suggest lace bug damage (Johnson and Lyon 1991).

You may be noticing the color disappearing from your azaleas right now. Do your azaleas look bleached out from a piercing-sucking insect. The culprit is probably azalea lace bug, Stephanitis pyrioides. This pest overwinters in eggs on the underside of infested leaves. Eggs hatch in late March and early April. The insect then passes through five nymphal instars before becoming an adult. It takes approximately one month for the insect to complete development from egg to adult and there are at least four generations per year. Valuable plants that are susceptible to lace bug damage should be inspected in the early spring for the presence of overwintering lace bug adults, eggs and newly-hatched nymphs. Inspect these plants every two weeks during the growing season for developing lace bug infestations.

Both adults and nymphs have piercing-sucking mouthparts and remove sap as they feed from the underside of the leaf. Lace bug damage to foliage detracts greatly from the plant’s beauty, reduces the plant’s ability to produce food, decreases plant vigor and causes the plant to be more susceptible to damage by other insects, diseases or unfavorable weather conditions. The azalea can become almost silver or bleached in appearance from the feeding lace bug damage.

However, lace bugs often go undetected until the infested plants show severe damage sometime into the summer. By then several generations of lace bugs have been weakening the plant. Inspecting early in the spring and simply washing them off the underside of the leaves can help to avoid damage later and the need for pesticides.

Adult lace bugs are flattened and rectangular in shape measuring 1/8 to 1/4 inch long. The area behind the head and the wing covers form a broadened, lace-like body covering. The wings are light amber to transparent in color. Lace bugs leave behind spiny black spots of frass (excrement).

Insect with clear wings.

Adult azalea lace bug, Stephanitis pyrioides (Scott), and excrement. Photograph by James. L. Castner, University of Florida.

Lace bug nymphs are flat and oval in shape with spines projecting from their bodies in all directions. A lace bug nymph goes through five growth stages (instars) before becoming an adult. At each stage the nymph sheds its skin (molts) and these old skins often remain attached to the lower surface of infested leaves.

Small dark-colored insect on leaf with shiny black spots.

Nymphs of the azalea lace bug, Stephanitis pyrioides (Scott), with several cast skins and excrement. Photograph by James. L. Castner, University of Florida.

Azalea lace bug eggs are football-shaped and are transparent to cream colored. Lace bug eggs are found on the lower leaf surface, usually alongside or inserted into a leaf vein. Adult females secrete a varnish-like substance over the eggs that hardens into a scab-like protective covering.

Other plant species, such as lantana and sycamore, may have similar symptoms. But, realize that lace bugs are host specific. They feed on their favorite plant and won’t go to another plant species. However, the life cycle is similar. Be sure to clean up all the damaged leaves. That’s where the eggs will remain for the winter. Start next spring egg-free.

For more information go to: http://entomology.ifas.ufl.edu/creatures/orn/shrubs/azalea_lace_bug.htm

Large Patch: Not the Only Rhizoctonia in Town

Large Patch: Not the Only Rhizoctonia in Town

Large patch Rhizoctonia solani (known as brown patch in cool season grasses) is a common disease of many turfgrass species.  It usually occurs during the cooler months from October through May when temperatures are below 80 degrees Fahrenheit.  However, signs and symptoms of large patch and other Rhizoctonia diseases can be observed throughout the summer.  Less common Rhizoctonia species that occur during the summer months are Rhizoctoni zeae and Rhizoctonia oryzae.  Extended periods of turf wetness from excessive rainfall or overwatering provide ideal conditions for the disease to develop and spread.

Rhizoctonia in zoysiagrass

Rhizoctonia in a zoysiagrass lawn. Photo Credit: Matt Lollar, University of Florida/IFAS Extension – Santa Rosa County

This summer in Santa Rosa County, Rhizoctonia has been positively diagnosed in both St. Augustinegrass and zoysiagrass lawns and suspected in a number of centipedegrass lawns.  The disease usually starts as small, yellow patches (about a foot in diameter) that turn reddish brown, brown, or straw colored as the leaves start to die. Patches often expand to several feet in diameter.  It is common to see rings of yellow or brown turf with otherwise healthy turf in the center.  The fungus infects portions of the blades closest to the soil, eventually killing the entire leaf.  Grass blades can easily be pulled off their stems, but roots are not affected by the disease.

Rhizoctonia in a St. Augustinegrass lawn

Rhizoctonia in a St. Augustinegrass lawn. Photo Credit: John Atkins, University of Florida/IFAS Extension – Santa Rosa County

Overwatering and excessive fertilization can both contribute to the development of Rhizoctonia disease.  Improper timing of fertilizer application can also promote disease development.  In the Florida Panhandle, turfgrass is actively growing from April to October.  Slow-release fertilizers are recommended to allow for a more even distribution of nutrients over the course of multiple months.  Recommended fertilizer rates are based on turfgrass species, geographical location, and fertilizer analysis.  Please refer to the UF/IFAS Publication: “Urban Turf Fertilizer Rule for Home Lawn Fertilization” for rate recommendations.

fertilizer chart

Chart excerpted from Florida-Friendly Landscaping publication.

If large patch or another Rhizoctonia disease is confirmed in your lawn, then chemical controls are necessary to keep the disease from spreading.  Fungicide products containing the active ingredients azoxystrobin, chlorothalonil, fludioxonil, flutolanil, iprodione, mancozeb, metconazole, myclobutanil, polyoxin D, propiconazole, thiophanate-methyl, thiram, triadimefon, trifloxystrobin, or triticonazole are viable options for keeping the disease from spreading.  For best results, follow the fungicide label for application instructions.  It’s important to not only treat the affected areas, but also the healthy turf surrounding these areas in order to keep the diseased spots from growing in size.

Unfortunately, turf diseases are often not noticed until large patches of declining and dead turf are noticed.  In these cases when large dead patches exist in the lawn, it is usually necessary to resod these areas.  As with most problems that arise in the landscape, good cultural practices are the most proactive way to mitigate the chances with turfgrass diseases.  The UF/IFAS Florida Friendly Website provides up-to-date solutions and recommendations for caring for Florida landscapes.

Best Time to Control Mole Crickets, If Needed

Best Time to Control Mole Crickets, If Needed

Adult and nymphs of mole crickets. Photo: Julie McConnell, UF/IFAS

The best time to treat for mole crickets is during June through July. But don’t treat at all if mole crickets have not been positively found and identified in the affected lawn areas.

Don’t worry about the adults that are seen flying around lights in the evenings or about the mole crickets found dead in swimming pools this time of year. They are in a mating phase and are doing very little to no damage to lawns during late winter and spring.

We can take advantage of the fact that there’s only one generation per year in North Florida. The eggs will have all hatched by mid to late June. At that time, you’re dealing with young mole crickets that can’t fly and that are much more susceptible to the insecticides designed to kill them. Mole crickets spend winter as adults in the soil. In late February and March, adults emerge and begin mating. Shortly after mating, males die and females fly to suitable areas for egg laying. Mated females deposit eggs in tunnels. After depositing her eggs the female dies. Attempting to control adult mole crickets during this mating period a waste of time, money and product. Plus, adult mole crickets are difficult to control and can easily fly out of treated areas.

You can easily determine if mole crickets are the cause for your lawn problem by flushing them out with a soap and water mixture.

Mix 1½ ounces of a lemon scented liquid dish-washing soap in two gallons of water in a sprinkling can or bucket. Pour the soapy water over an area approximately four square feet and count the number of mole crickets that emerge. It only takes several minutes for mole crickets to crawl to the surface after the soap treatment if they are present. Repeat the process around the yard where you suspect mole cricket problems. If you flush an average of two to four crickets are flushed out per site, control may be needed.

There are a number of insecticides on the market to control mole crickets. But before using any product, first identify the problem as mole cricket damage by using the soap flush technique. Then choose a lawn insecticide that lists mole crickets on its label. And finally read the label carefully for use directions, application techniques, irrigation requirements and precautions.

For more information on mole crickets, including recommended insecticides and other non-chemical control options, contact the UF/IFAS Extension Office in your County or access the following links.

Insect Pest Management on Turfgrass

Shortwinged Molecricket 

Mole Cricket IPM Guide for Florida 

5 Simple Tips for Backyard Tomato Growing Success

5 Simple Tips for Backyard Tomato Growing Success

Talk to nearly any Panhandle gardener and one of the first things brought up in conversation is the difficulty growing large, beefsteak/slicing tomatoes (Solanum lycopersicum) in their home garden.  Large tomatoes are indeed among the more challenging garden vegetables in North Florida, affected by myriad pests, pathogens and abiotic issues.  However, giving up growing this garden favorite is unwarranted as success can be had by following a couple of often overlooked, simple steps to ward off potential problems.

Choose Resistant Cultivars – One of the major recent gardening trends is the rise of heirloom veggies, particularly heirloom tomatoes.  While many of these varieties certainly are interesting and often possess superior flavor/texture, heirlooms are, as a group, extraordinarily susceptible to disease in our climate.  Fortunately for gardeners, there are a number of excellent varieties available with large resistance profiles to many common diseases and a similar taste profile to heirloom favorites!  ‘Big Beef’ (pictured), ‘Better Boy’, ‘Celebrity’, and ‘Skyway’ are just a few of the many great cultivars with extensive disease resistance available as transplants at garden centers or as seed from quality online seed vendors.

Tomato ‘Big Beef’ in 15 gallon decorative container

Start Early – Once, you’ve selected the proper cultivar, the next key is to get them in the ground early!  I’m convinced one of the primary reasons folks fail with tomatoes is waiting for “traditional” garden planting dates.  For instance, an old tradition in the South is to plant your garden on Good Friday before Easter.  However, according to Johnny’s Selected Seeds Southeast Sales Representative Blake Thaxton, tomatoes should be germinated and growing in the garden no later than March 15.  Mr. Thaxton notes two primary reasons for this, the most important being pest/disease avoidance.  Beefsteak tomato varieties take around 70 days from planting to harvest, so a March 15th planting date yields ripe tomatoes around the third or fourth week of May, when pest/disease pressure is still manageable.  Pests and disease occurrence becomes exponentially worse in the Panhandle as May trickles into June and July, therefore it is critical that your fruit begin ripening prior to this onslaught.  An important second motivation to plant early is that tomatoes stop setting fruit when nighttime temperatures rise above 75°F.  At these temperatures, tomato pollen is rendered sterile and though the plant will continue flowering, no fruit will be set.

Mulch – Another overlooked best management practice in backyard veggie gardening is mulching!  Those of us who tend flower beds already know many benefits of mulch like soil temperature moderation, weed prevention, and moisture conservation.  But for tomato growers, mulch has another benefit – disease prevention!  Several serious diseases that affect tomato are soil-borne pathogens (i.e. Early Blight, Late Blight, Bacterial Spot, etc.).  These pathogens find their way onto plants either indirectly via water splashing from soil onto leaves or direct contact from leaves and fruit resting on the soil. To prevent these pathogens from infecting plant tissue, apply an organic mulch (preferably wheat straw or tree leaves) under and around plants.  This simple step goes a long way toward season-long, yield-saving disease prevention.

Consistent Watering – Everyone knows plants need water but what you might not know is that irrigation consistency makes a huge difference in plant health, particularly tomatoes.  Consistent watering is key in helping ward off one of the most frustrating tomato maladies, blossom end rot (BER) – you know, the one where the bottom end of your perfectly good tomato fruit turns to a brownish mush!  Though BER is caused by calcium deficiency, the condition is commonly induced by creation of distinct wet and dry periods from non-regular watering, interfering with calcium uptake and availability to the plant.  So, while you may have adequate soil calcium, if you don’t water correctly, the condition will happen anyway!  It’s also good to keep in mind that mature tomato plants use large quantities of water daily, so during the heat of summer, plants in containers may need to be watered multiple times daily to maintain consistently moist soil.  Think about it, you don’t drink 8 glasses of water when you wake up and then never drink again throughout a hot day.  A tomato is no different.  Allowing your plants to wilt down before providing additional water ruins productivity and can induce BER.

Tomato ‘Big Beef’ demonstrating pruning for soil clearance and airflow.

Pruning – I get it.  Once you’ve nursed your baby tomato from a wee transplant or seed into a rapidly growing and flowering plant, it seems counter-intuitive to break out the pruners, but to keep your tomato plant as healthy as possible for as long as possible, that is what you must do!  Pruning tomatoes should accomplish two things.  First, remove the bottom layer of foliage from the plant base, so that water will not readily splash onto the lowest remaining leaves.  (I tend to remove all leaves up to the second set of flowers 8-12” from the soil’s surface.)  As with mulching, this prevents bacterial and fungal pathogens from spreading easily from the soil surface onto your plant.  Second, tomato plants, especially the vigorous indeterminate varieties, often grow more foliage than is necessary for fruit production.  This excess foliage can prevent airflow and trap moisture in the canopy of the plant, promoting disease.  To open up the canopy and allow for more airflow, I prune off leaves that grow from the primary stems inward to the center of the plant.  The idea is to keep the inside of the plant open while allowing enough leaves to power photosynthesis and shade the developing fruit below.

Tomatoes are notoriously hard to grow, but by following a few easy preventative practices, gardeners can greatly increase their chances of realizing harvestable fruit come summer.  Please keep in mind that this is not an exhaustive list that will ensure disease-free plants over the entire growing season (you should also get a soil test to make sure your pH and soil fertility are correct and ideally you’d never work in your tomatoes when they are wet, etc., but this is a good place to start!).  However, a little bit of planning and prevention early in the season can make growing tomatoes a lot less frustrating!  As always, if you have questions regarding tomatoes or any other horticultural topic, please contact your local UF/IFAS Extension Office.  Happy gardening!

 

 

Weeds – More Than Just a Garden Eyesore

Weeds – More Than Just a Garden Eyesore

Nobody likes weeds in their garden.  Weeds are not only ugly, they can host insects and diseases that later spread to your garden.  This situation commonly occurs when weeds belong to the same plant family as the desired landscape or vegetable species, but some insects and diseases have diverse palettes.  For example, I recently witnessed a looper caterpillar on a pokeweed plant.

Looper Damage on a Pokeweed

Looper damage on a pokeweed plant. Photo Credit: Matt Lollar, University of Florida/IFAS Extension at Santa Rosa County

Loopers are common pests of vegetable gardens and in the landscape.  Probably the most common loopers found in North Florida gardens are cabbage loopers (Trichoplusia ni) and soybean loopers (Chrysodeixis includens).  Cabbage loopers can be found feeding on cabbage, of course, as well as leafy greens, cucumbers, tomatoes, chrysanthemums, and snapdragons.  Weeds that attract this looper are lambsquarters, dandelions, and curly dock.  Soybean loopers like to feed on sweet potatoes, tomatoes, watermelons, geraniums, and sunflowers.  They can also be found feeding on oxalis, kutzu, and lantana.

Looper insect

Looper found on pokeweed plant. Photo Credit: Matt Lollar, University of Florida/IFAS Extension at Santa Rosa County

Although weeds can be hosts for pests, they may be used advantageously.  Trap crops can be planted at a garden’s perimeter or windward portion to attract pests away from the desired crop.  A trap crop draws the pest crop away from the main crop.  The trap crop is then destroyed or sprayed with insecticide when the pest insect is found feeding on it.  This allows for a reduction or elimination of insecticidal use on the desired crop.  However, it is important that both the trap crop and the desired food crop or ornamental crop are regularly scouted to keep track of pest populations.

For more information on trap crops and other insect and disease diversion methods you can read the EDIS Publication: Intercropping, Crop Diversity and Pest Management.